Surface Phonon Polaritons Mediated Energy Transfer between Nanoscale Gaps

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Nano Letters (Impact Factor: 12.94). 09/2009; 9(8):2909-13. DOI: 10.1021/nl901208v
Source: PubMed

ABSTRACT Surface phonon polaritons are electromagnetic waves that propagate along the interfaces of polar dielectrics and exhibit a large local-field enhancement near the interfaces at infrared frequencies. Theoretical calculations show that such surface waves can lead to breakdown of the Planck's blackbody radiation law in the near field. Here, we experimentally demonstrate that surface phonon polaritons dramatically enhance energy transfer between two surfaces at small gaps by measuring radiation heat transfer between a microsphere and a flat surface down to 30 nm separation. The corresponding heat transfer coefficients at nanoscale gaps are 3 orders of magnitude larger than that of the blackbody radiation limit. The high energy flux can be exploited to develop new radiative cooling and thermophotovoltaic technologies.


Available from: Arvind Narayanaswamy, Oct 26, 2014
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: When the separation of two surfaces approaches sub-nanometre scale, the boundary between the two most fundamental heat transfer modes, heat conduction by phonons and radiation by photons, is blurred. Here we develop an atomistic framework based on microscopic Maxwell’s equations and lattice dynamics to describe the convergence of these heat transfer modes and the transition from one to the other. For gaps >1 nm, the predicted conductance values are in excellent agreement with the continuum theory of fluctuating electrodynamics. However, for sub-nanometre gaps we find the conductance is enhanced up to four times compared with the continuum approach, while avoiding its prediction of divergent conductance at contact. Furthermore, low-frequency acoustic phonons tunnel through the vacuum gap by coupling to evanescent electric fields, providing additional channels for energy transfer and leading to the observed enhancement. When the two surfaces are in or near contact, acoustic phonons become dominant heat carriers.
    Nature Communications 04/2015; 6. DOI:10.1038/ncomms7755 · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We derive shape-independent limits to the spectral radiative heat-transfer rate between two closely spaced bodies, generalizing the concept of a black body to the case of near-field energy transfer. By conservation of energy, we show that each body of susceptibility $\chi$ can emit and absorb radiation at enhanced rates bounded by $|\chi|^2 / \operatorname{Im} \chi$, optimally mediated by near-field photon transfer proportional to $1/d^2$ across a separation distance $d$. Dipole--dipole and dipole--plate structures approach restricted versions of the limit, but common large-area structures do not exhibit the material enhancement factor and thus fall short of the general limit. By contrast, we find that particle arrays interacting in an idealized Born approximation exhibit both enhancement factors, suggesting the possibility of orders-of-magnitude improvement beyond previous designs and the potential for radiative heat transfer to be comparable to conductive heat transfer through air at room temperature, and significantly greater at higher temperatures.