Using total internal reflection fluorescence (TIRF) microscopy to visualize cortical actin and microtubules in the Drosophila syncytial embryo

Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
Developmental Dynamics (Impact Factor: 2.38). 10/2009; 238(10):2622-32. DOI: 10.1002/dvdy.22076
Source: PubMed


The Drosophila syncytial embryo is a powerful developmental model system for studying dynamic coordinated cytoskeletal rearrangements. Confocal microscopy has begun to reveal more about the cytoskeletal changes that occur during embryogenesis. Total internal reflection fluorescence (TIRF) microscopy provides a promising new approach for the visualization of cortical events with heightened axial resolution. We have applied TIRF microscopy to the Drosophila embryo to visualize cortical microtubule and actin dynamics in the syncytial blastoderm. Here, we describe the details of this technique, and report qualitative assessments of cortical microtubules and actin in the Drosophila syncytial embryo. In addition, we identified a peak of cortical microtubules during anaphase of each nuclear cycle in the syncytial blastoderm, and using images generated by TIRF microscopy, we quantitatively analyzed microtubule dynamics during this time.

Download full-text


Available from: Simon C Watkins, Oct 02, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: This review encompasses the natural products literature (with the exception of the patent literature or conference abstracts) of some of the different species of plants in the Polygonum species. Some of the plants in this genus originated in Japan and were later introduced to other parts of the world. These plants are commonly used in Chinese and Japanese folk medicine for the treatment of bronchial and pulmonary disorders, suppurative dermatitis, gonorrhea, and hyperlipemia. The main focus will be on plant species from the genus Polygonum which is also synonymous with the genuses, Fallopia and Reytonouria.A comprehensive analysis detailing the research on the chemistry of the different classes of natural products from extracts of Polygonum plant species and their modes of action will be reported and the structure-activity relationships will be addressed wherever possible. In addition, the evaluations of bioactive compounds of Polygonum species will be discussed in terms of potential biological uses.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Total internal reflection fluorescence (TIRF) microscopy is a technique that allows selective excitation of fluorescence at a liquid/solid interface within a short distance from the boundary. The penetration depth of TIRF microscopy depends on the angle of illumination resulting in a range of depths, which typically vary from approximately similar 70-200 nm up to reverse approximately 500 nm. The advantages of TIRF microscopy include excellent signal-to-noise ratio, high sensitivity, low photobleaching, and low photodamage. TIRF microscopy is widely used for studying cell adhesion, exo- and endocytosis, and the dynamics of plasma membrane-associated molecules. TIRF microscopy can also be applied for selective visualization of any other cellular processes that occur near the basal membrane even if their localization is not restricted to this part of the cell. For example, microtubules are distributed throughout the cytoplasm, but the use of TIRF microscopy makes it possible to visualize specifically the microtubule subpopulation in the vicinity of the basal cortex and thus study cortical microtubule attachment and stabilization, interactions between microtubules and matrix adhesion structures, and the behavior of specific molecules involved in these processes. In this chapter we describe the application of a commercially available setup to analyze microtubule behavior in live mammalian cells using TIRF microscopy.
    Methods in cell biology 01/2010; 97:91-109. DOI:10.1016/S0091-679X(10)97006-4 · 1.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The 18.5-kDa classic myelin basic protein (MBP) is an intrinsically disordered protein arising from the Golli (Genes of Oligodendrocyte Lineage) gene complex and is responsible for compaction of the myelin sheath in the central nervous system. This MBP splice isoform also has a plethora of post-translational modifications including phosphorylation, deimination, methylation, and deamidation, that reduce its overall net charge and alter its protein and lipid associations within oligodendrocytes (OLGs). It was originally thought that MBP was simply a structural component of myelin; however, additional investigations have demonstrated that MBP is multi-functional, having numerous protein-protein interactions with Ca²⁺-calmodulin, actin, tubulin, and proteins with SH3-domains, and it can tether these proteins to a lipid membrane in vitro. Here, we have examined cytoskeletal interactions of classic 18.5-kDa MBP, in vivo, using early developmental N19-OLGs transfected with fluorescently-tagged MBP, actin, tubulin, and zonula occludens 1 (ZO-1). We show that MBP redistributes to distinct 'membrane-ruffled' regions of the plasma membrane where it co-localizes with actin and tubulin, and with the SH3-domain-containing proteins cortactin and ZO-1, when stimulated with PMA, a potent activator of the protein kinase C pathway. Moreover, using phospho-specific antibody staining, we show an increase in phosphorylated Thr98 MBP (human sequence numbering) in membrane-ruffled OLGs. Previously, Thr98 phosphorylation of MBP has been shown to affect its conformation, interactions with other proteins, and tethering of other proteins to the membrane in vitro. Here, MBP and actin were also co-localized in new focal adhesion contacts induced by IGF-1 stimulation in cells grown on laminin-2. This study supports a role for classic MBP isoforms in cytoskeletal and other protein-protein interactions during membrane and cytoskeletal remodeling in OLGs.
    Neurochemical Research 01/2012; 37(6):1277-95. DOI:10.1007/s11064-011-0700-2 · 2.59 Impact Factor
Show more