Association of Body Mass and Brain Activation during Gastric Distention: Implications for Obesity

National Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, Maryland, United States of America.
PLoS ONE (Impact Factor: 3.23). 02/2009; 4(8):e6847. DOI: 10.1371/journal.pone.0006847
Source: PubMed


Gastric distention (GD), as it occurs during meal ingestion, signals a full stomach and it is one of the key mechanisms controlling food intake. Previous studies on GD showed lower activation of the amygdala for subjects with higher body mass index (BMI). Since obese subjects have dopaminergic deficits that correlate negatively with BMI and the amygdala is innervated by dopamine neurons, we hypothesized that BMI would correlate negatively with activation not just in the amygdala but also in other dopaminergic brain regions (midbrain and hypothalamus).
We used functional magnetic resonance imaging (fMRI) to evaluate brain activation during GD in 24 healthy subjects with BMI range of 20-39 kg/m(2). Using multiple regression and cross-correlation analyses based on a family-wise error corrected threshold P = 0.05, we show that during slow GD to maximum volumes of 500 ml and 700 ml subjects with increased BMI had increased activation in cerebellum and left posterior insula, and decreased activation of dopaminergic (amygdala, midbrain, hypothalamus, thalamus) and serotonergic (pons) brain regions and anterior insula, regions that were functionally interconnected with one another.
The negative correlation between BMI and BOLD responses to gastric distention in dopaminergic (midbrain, hypothalamus, amygdala, thalamus) and serotonergic (pons) brain regions is consistent with disruption of dopaminergic and serotonergic signaling in obesity. In contrast the positive correlation between BMI and BOLD responses in posterior insula and cerebellum suggests an opposing mechanism that promotes food intake in obese subjects that may underlie their ability to consume at once large food volumes despite increasing gastric distention.

Download full-text


Available from: Allan Geliebter,
    • "The insula is the key brain system for interoceptive processing, but growing evidence suggests that adiposity may interfere with the normal perception of interoceptive input. For instance , adult obese patients display reduced posterior insula activation in response to mechanically-induced gastric distention (Tomasi et al., 2009). Therefore, adolescents with excess weight may have decreased insula sensitivity towards interoceptive stimuli (i.e., signals of hunger and satiety, bodily representations of the risk of aversive outcomes) and comparatively increased sensitivity towards external rewards (Smith et al., 2014). "
    [Show abstract] [Hide abstract]
    ABSTRACT: This study was aimed to examine if adolescent obesity is associated with alterations of insula function as indexed by differential correlations between insula activation and perception of interoceptive feedback versus external food cues. We hypothesized that, in healthy weight adolescents, insula activation will positively correlate with interoceptive sensitivity, whereas in excess weight adolescents, insula activation will positively correlate with sensitivity towards external cues. Fifty-four adolescents (age range 12-18), classified in two groups as a function of BMI, excess weight (n=22) and healthy weight (n=32), performed the Risky-Gains task (sensitive to insula function) inside an fMRI scanner, and completed the heartbeat perception task (measuring interoceptive sensitivity) and the Dutch Eating Behavior Questionnaire (measuring external eating as well as emotional eating and restraint) outside the scanner. We found that insula activation during the Risky-Gains task positively correlated with interoceptive sensitivity and negatively correlated with external eating in healthy weight adolescents. Conversely, in excess weight adolescents, insula activation positively correlated with external eating and negatively correlated with interoceptive sensitivity, arguably reflecting obesity related neurocognitive adaptations. In excess weight adolescents, external eating was also positively associated with caudate nucleus activation, and restrained eating was negatively associated with insula activation. Our findings suggest that adolescent obesity is associated with disrupted tuning of the insula system towards interoceptive input. Copyright © 2015. Published by Elsevier Ltd.
    Appetite 03/2015; 93. DOI:10.1016/j.appet.2015.03.024 · 2.69 Impact Factor
  • Source
    • "It is still unclear whether these neural features could serve as vulnerability factors for BD in individuals with metabolic disorders and/or high BMI. Thus far the dysregulation of the reward system circuits and dopaminergic receptor activity in obesity may be the most compelling piece of evidence linking food intake and mood regulation in obese individuals at risk of developing BD [52] [53] [54] "
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent evidence shows an important relationship between metabolic disturbances and bipolar disorder (BD). However, it is still unclear whether such metabolic disturbances are only a consequence or to some extent the precipitating factors for health problems and maladaptive behaviors observed in BD. Because both metabolic disturbances and BD are medical conditions sharing common alterations in multiple biomarkers, it is plausible to hypothesize that metabolic disturbances may be considered to some extent as a major vulnerability factor in the latent phase of BD for some young adults. In line with this hypothesis , obesity may be regarded as a major driving force for prevalent cardio-metabolic disorders encountered within the early stages of BD. Likewise, premorbid metabolic disturbances as a whole may be considered as a potential source for vulnerability to develop BD. In addition, a synergistic relationship between obesity and metabolic disturbances associated with a premorbid disruption of biological rhythms may also lead to BD. Therefore, we postulate that metabolic disturbances may serve as a specific marker of premorbid illness activity in some people at risk for BD. Future prospective studies should focus on validating metabolic disturbances as vulnerability factors within the staging model of BD.
    Iranian Journal of Medical Hypotheses and Ideas 01/2015; 84(4). DOI:10.1016/j.mehy.2015.01.016
  • Source
    • "Consequently, different authors investigated the neuronal networks that responded to specific orexigenic or anorexigenic signals (Batterham et al., 2007; Miller et al., 2007; Malik et al., 2008). Currently, the applications of BOLD fMRI on studies of appetite regulation are mainly dedicated to the study of hypothalamic response to glucose (Vidarsdottir et al., 2007; Purnell et al., 2011), to the establishment of differences between fMRI responses in obese and non-obese humans (Tomasi et al., 2009), and to the effects of appetite modulating hormones derived from the gastrointestinal tract and adipose tissue, mainly ghrelin (Jones et al., 2012), insulin (Guthoff et al., 2010) and leptin (Baicy et al., 2007; Farooqi et al., 2007). Figure 4 illustrates a representative application of BOLD imaging to appetite regulation in a study that monitored hypothalamic activation in humans, as induced by a paradigm that showed images of high-and low-calorie foods. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We review the role of neuroglial compartmentation and transcellular neurotransmitter cycling during hypothalamic appetite regulation as detected by Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) methods. We address first the neurochemical basis of neuroendocrine regulation in the hypothalamus and the orexigenic and anorexigenic feed-back loops that control appetite. Then we examine the main MRI and MRS strategies that have been used to investigate appetite regulation. Manganese-enhanced magnetic resonance imaging (MEMRI), Blood oxygenation level-dependent contrast (BOLD), and Diffusion-weighted magnetic resonance imaging (DWI) have revealed Mn(2+) accumulations, augmented oxygen consumptions, and astrocytic swelling in the hypothalamus under fasting conditions, respectively. High field (1)H magnetic resonance in vivo, showed increased hypothalamic myo-inositol concentrations as compared to other cerebral structures. (1)H and (13)C high resolution magic angle spinning (HRMAS) revealed increased neuroglial oxidative and glycolytic metabolism, as well as increased hypothalamic glutamatergic and GABAergic neurotransmissions under orexigenic stimulation. We propose here an integrative interpretation of all these findings suggesting that the neuroendocrine regulation of appetite is supported by important ionic and metabolic transcellular fluxes which begin at the tripartite orexigenic clefts and become extended spatially in the hypothalamus through astrocytic networks becoming eventually MRI and MRS detectable.
    Frontiers in Neuroenergetics 06/2013; 5:6. DOI:10.3389/fnene.2013.00006
Show more