Association of Body Mass and Brain Activation during Gastric Distention: Implications for Obesity

National Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, Maryland, United States of America.
PLoS ONE (Impact Factor: 3.53). 02/2009; 4(8):e6847. DOI: 10.1371/journal.pone.0006847
Source: PubMed

ABSTRACT Gastric distention (GD), as it occurs during meal ingestion, signals a full stomach and it is one of the key mechanisms controlling food intake. Previous studies on GD showed lower activation of the amygdala for subjects with higher body mass index (BMI). Since obese subjects have dopaminergic deficits that correlate negatively with BMI and the amygdala is innervated by dopamine neurons, we hypothesized that BMI would correlate negatively with activation not just in the amygdala but also in other dopaminergic brain regions (midbrain and hypothalamus).
We used functional magnetic resonance imaging (fMRI) to evaluate brain activation during GD in 24 healthy subjects with BMI range of 20-39 kg/m(2). Using multiple regression and cross-correlation analyses based on a family-wise error corrected threshold P = 0.05, we show that during slow GD to maximum volumes of 500 ml and 700 ml subjects with increased BMI had increased activation in cerebellum and left posterior insula, and decreased activation of dopaminergic (amygdala, midbrain, hypothalamus, thalamus) and serotonergic (pons) brain regions and anterior insula, regions that were functionally interconnected with one another.
The negative correlation between BMI and BOLD responses to gastric distention in dopaminergic (midbrain, hypothalamus, amygdala, thalamus) and serotonergic (pons) brain regions is consistent with disruption of dopaminergic and serotonergic signaling in obesity. In contrast the positive correlation between BMI and BOLD responses in posterior insula and cerebellum suggests an opposing mechanism that promotes food intake in obese subjects that may underlie their ability to consume at once large food volumes despite increasing gastric distention.

1 Follower
  • Source
    Frontiers in Psychology 04/2015; 6. DOI:10.3389/fpsyg.2015.00547 · 2.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We review the role of neuroglial compartmentation and transcellular neurotransmitter cycling during hypothalamic appetite regulation as detected by Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) methods. We address first the neurochemical basis of neuroendocrine regulation in the hypothalamus and the orexigenic and anorexigenic feed-back loops that control appetite. Then we examine the main MRI and MRS strategies that have been used to investigate appetite regulation. Manganese-enhanced magnetic resonance imaging (MEMRI), Blood oxygenation level-dependent contrast (BOLD), and Diffusion-weighted magnetic resonance imaging (DWI) have revealed Mn(2+) accumulations, augmented oxygen consumptions, and astrocytic swelling in the hypothalamus under fasting conditions, respectively. High field (1)H magnetic resonance in vivo, showed increased hypothalamic myo-inositol concentrations as compared to other cerebral structures. (1)H and (13)C high resolution magic angle spinning (HRMAS) revealed increased neuroglial oxidative and glycolytic metabolism, as well as increased hypothalamic glutamatergic and GABAergic neurotransmissions under orexigenic stimulation. We propose here an integrative interpretation of all these findings suggesting that the neuroendocrine regulation of appetite is supported by important ionic and metabolic transcellular fluxes which begin at the tripartite orexigenic clefts and become extended spatially in the hypothalamus through astrocytic networks becoming eventually MRI and MRS detectable.
    Frontiers in Neuroenergetics 06/2013; 5:6. DOI:10.3389/fnene.2013.00006
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stress is natural and belongs to life itself. To sustain it and even grow with it biology invented different mechanisms, since stress resistance is obligatory. These pathways, we surmise, can be activated and learned intentionally, through professional stress management training or 'mind-body medicine', or endogenously and automatically through autoregulation. Since the primary goal of various stress-reducing approaches is corresponding, we expect to find an overlapping physiology and neurobiological principle of stress reduction. These common pathways, as we speculate, involve some of the very same signalling molecules and structures. METHODS: Concepts of stress and stress management are described and then associated with underlying molecular and neurobiological pathways. Evidence is gathered from different sources to substantiate the hypothesis of an overlapping neurobiological principle in stress autoregulation. RESULTS: Stress describes the capacity and mechanisms to sustain and adjust to externally or internally challenging situations. Therefore, organisms can rely on the endogenous ability to self-regulate stress and stressors, i.e., autoregulatory stress management. Stress management usually consists of one to all of the following instruments and activities: behavioral or cognitive, exercise, relaxation and nutritional or food interventions (BERN), including social support and spirituality. These columns can be analyzed for their underlying neurobiological and autoregulatory pathways, thereby revealing a close connection to the brain's pleasure, reward and motivation circuits that are particularly bound to limbic structures and to endogenous dopamine, morphine, and nitric oxide (NO) signalling. Within this work, we demonstrate the existence of opioid, opiate, dopamine and related pathways for each of the selected stress management columns. DISCUSSION: Stress management techniques may possess specific and distinct physiological effects. However, beneficial behaviors and strategies to overcome stress are, as a more general principle, neurobiologically rewarded by pleasure induction, yet positively and physiologically amplified and reinforced, and this seems to work via dopamine, endorphin and morphine release, apart from other messenger molecules. These latter effects are unspecific, however, down-regulatory and clearly stress-reducing by their nature. CONCLUSIONS: There seems to exist a common neurobiological mechanism, i.e., limbic autoregulation, that involves dopamine, morphine and other endogenous signalling molecules, e.g., other opioid receptor agonists, endocannabinoids, oxytocin or serotonin, many of which act via NO release, and this share seems to be of critical importance for the self-regulation and management of stress: stress management is an endogenous potential.
    Neuro endocrinology letters 01/2010; 31(1):19-39. · 0.94 Impact Factor