Structure and allosteric effects of low-molecular-weight activators on the protein kinase PDK1

Research Group PhosphoSites, Department of Internal Medicine I, Universitätsklinikum Frankfurt, Frankfurt, Germany.
Nature Chemical Biology (Impact Factor: 13.22). 09/2009; 5(10):758-64. DOI: 10.1038/nchembio.208
Source: PubMed

ABSTRACT Protein phosphorylation transduces a large set of intracellular signals. One mechanism by which phosphorylation mediates signal transduction is by prompting conformational changes in the target protein or interacting proteins. Previous work described an allosteric site mediating phosphorylation-dependent activation of AGC kinases. The AGC kinase PDK1 is activated by the docking of a phosphorylated motif from substrates. Here we present the crystallography of PDK1 bound to a rationally developed low-molecular-weight activator and describe the conformational changes induced by small compounds in the crystal and in solution using a fluorescence-based assay and deuterium exchange experiments. Our results indicate that the binding of the compound produces local changes at the target site, the PIF binding pocket, and also allosteric changes at the ATP binding site and the activation loop. Altogether, we present molecular details of the allosteric changes induced by small compounds that trigger the activation of PDK1 through mimicry of phosphorylation-dependent conformational changes.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Many human malignancies are associated with aberrant regulation of protein or lipid kinases due to mutations, chromosomal rearrangements and/or gene amplification. Protein and lipid kinases, represent an important target class for treating human disorders. This review focus on "the 10 things you should know about protein kinases and their inhibitors" including a short introduction on the history on protein kinases and inhibitor and ending with a perspective in kinase drug discovery. Although the "10 things" have been, to a certain extent, chosen arbitrarily, they cover in a comprehensive way the past and present efforts in kinase drug discovery and summarize the "status quo" of the current kinase inhibitors as well as knowledge about kinase structure and binding modes. Besides describing the potentials of protein kinase inhibitors as drugs this review also focus on their limitations, in particular on how to circumvent emerging resistance against kinase inhibitors in oncological indications. This article is protected by copyright. All rights reserved.
    British Journal of Pharmacology 01/2015; DOI:10.1111/bph.13096 · 4.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is increasing evidence that the atypical protein kinase C, PKCζ, might be a therapeutic target in pulmonary and hepatic inflammatory diseases. However, targeting the highly conserved ATP-binding pocket in the catalytic domain held little promise to achieve selective inhibition. In the present study, we introduce 1,3,5-trisubstituted pyrazolines as potent and selective allosteric PKCζ inhibitors. The rigid scaffold offered many sites for modification, all acting as hot spots for improving activity, and gave rise to sharp structure-activity relationships. Targeting of PKCζ in cells was confirmed by reporter gene assay, transfection assays, and Western blotting. The strongly reduced cell-free and cellular activities toward a PIF-pocket mutant of PKCζ suggested that the inhibitors most likely bound to the PIF-pocket on the kinase catalytic domain. Thus, using a rigidification strategy and by establishing and optimizing multiple molecular interactions with the binding site, we were able to significantly improve the potency of the previously reported PKCζ inhibitors.
    Journal of Medicinal Chemistry 07/2014; 57(15). DOI:10.1021/jm500521n · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Allosteric interactions play vital roles in metabolic processes and signal transduction and, more recently, have become the focus of numerous pharmacological studies because of the potential for discovering more target-selective chemical probes and therapeutic agents. In addition to classic early studies on enzymes, there are now examples of small molecule allosteric modulators for all superfamilies of receptors encoded by the genome, including ligand- and voltage-gated ion channels, G protein-coupled receptors, nuclear hormone receptors, and receptor tyrosine kinases. As a consequence, a vast array of pharmacologic behaviors has been ascribed to allosteric ligands that can vary in a target-, ligand-, and cell-/tissue-dependent manner. The current article presents an overview of allostery as applied to receptor families and approaches for detecting and validating allosteric interactions and gives recommendations for the nomenclature of allosteric ligands and their properties.
    Pharmacological reviews 10/2014; 66(4):918-47. DOI:10.1124/pr.114.008862 · 18.55 Impact Factor