Article

Epigenetic Dysregulation in Cancer

Department of Pathology, University of Michigan Medical School, Ann Arbor MI 48109, USA.
American Journal Of Pathology (Impact Factor: 4.6). 09/2009; 175(4):1353-61. DOI: 10.2353/ajpath.2009.081142
Source: PubMed

ABSTRACT One of the great paradoxes in cellular differentiation is how cells with identical DNA sequences differentiate into so many different cell types. The mechanisms underlying this process involve epigenetic regulation mediated by alterations in DNA methylation, histone posttranslational modifications, and nucleosome remodeling. It is becoming increasingly clear that disruption of the "epigenome" as a result of alterations in epigenetic regulators is a fundamental mechanism in cancer. This has major implications for the future of both molecular diagnostics as well as cancer chemotherapy.

Full-text

Available from: Andrew G Muntean, May 13, 2015
0 Followers
 · 
89 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently we described some (thiazol-2-yl)hydrazones as antiprotozoal, antifungal and anti-MAO agents as well as Gcn5 HAT inhibitors. Among these last compounds, CPTH2 and CPTH6 showed HAT inhibition in cells and broad anticancer properties. With the aim to identify HAT inhibitors more potent than the two prototypes, we synthesized several new (thiazol-2-yl)hydrazones including some related thiazolidines and pyrimidin-4(3H)-ones, and we tested the whole library existing in our lab against human p300 and PCAF HAT enzymes. Some compounds (1x, 1c', 1d', 1i' and 2m) were more efficient than CPTH2 and CPTH6 in inhibiting the p300 HAT enzyme. When tested in human leukemia U937 and colon carcinoma HCT116 cells (100 μM, 30 h), 1x, 1i' and 2m gave higher (U937 cells) or similar (HCT116 cells) apoptosis than CPTH6, and were more potent than CPTH6 in inducing cytodifferentiation (U937 cells).
    European Journal of Medicinal Chemistry 04/2014; 80C:569-578. DOI:10.1016/j.ejmech.2014.04.042 · 3.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) are essential compounds in the carbon metabolic cycle that have clinical implications in a broad range of disease conditions. The measurement of the ratio SAM/SAH also called methylation index, has become a way of monitoring the DNA methylation of a cell which is an epigenetic event with important clinical implications in diagnosis; therefore the development of suitable methods to accurately quantify these compounds is mandatory. This work illustrates the comparison of three independent methods for the determination of the methylation index, all of them based on the chromatographic separation of the two species (SAM and SAH) using either ion-pairing reversed phase or cation exchange chromatography. The species detection was conducted using either molecular absorption spectrophotometry (HPLC–UV) or mass spectrometry with electrospray (ESI-MS/MS) as ionization source or inductively coupled plasma (DF-ICP-MS) by monitoring the S-atom contained in both analytes. The analytical performance characteristics of the three methods were critically compared obtaining best features for the combination of reversed phase HPLC with ESI-MS in the MRM mode. In this case, detection limits of about 0.5 ng mL−1 for both targeted analytes permitted the application of the designed strategy to evaluate the effect of cisplatin on the changes of the methylation index among epithelial ovarian cancer cell lines sensitive (A2780) and resistant (A2780CIS) to this drug after exposition to cisplatin.
    Journal of Chromatography A 05/2015; 1393. DOI:10.1016/j.chroma.2015.03.028 · 4.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The apoptosis pathway of programmed cell death is frequently deregulated in cancer. An intact apoptosis pathway is required for proper response to anti-cancer treatment. We investigated the chromatin status of key apoptosis genes in the apoptosis pathway in colorectal cancer cell lines in relation to apoptosis induced by chemo-, immune- or radiation therapy. Using chromatin immunoprecipitation (ChIP), we measured the presence of transcription-activating histone modifications H3Ac and H3K4me3 and silencing modifications H3K9me3 and H3K27me3 at the gene promoter regions of key apoptosis genes Bax, Bcl2, Caspase-9, Fas (CD95) and p53. Cell lines DLD1, SW620, Colo320, Caco2, Lovo and HT29 were treated with cisplatin, anti-Fas or radiation. The apoptotic response was measured by flow cytometry using propidium iodide and annexin V-FITC. The chromatin status of the apoptosis genes reflected the activation status of the intrinsic (Bax, Bcl2, Caspase-9 and p53) and extrinsic (Fas) pathways. An active intrinsic apoptotic pathway corresponded to sensitivity to cisplatin and radiation treatment of cell lines DLD1, SW620 and Colo320. An active Fas promoter corresponded to an active extrinsic apoptotic pathway in cell line DLD1. mRNA expression data correlated with the chromatin status of the apoptosis genes as measured by ChIP. In conclusion, the results presented in this study indicate that the balance between activating and silencing histone modifications, reflecting the chromatin status of apoptosis genes, can be used to predict the response of tumor cells to different anti-cancer therapies and could provide a novel target to sensitize tumors to obtain adequate treatment responses.
    APOPTOSIS 10/2014; 19(12). DOI:10.1007/s10495-014-1042-8 · 3.61 Impact Factor