Article

Conjugative plasmid transfer and adhesion dynamics in an Escherichia coli biofilm.

School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia.
Applied and Environmental Microbiology (Impact Factor: 3.95). 09/2009; 75(21):6783-91. DOI: 10.1128/AEM.00974-09
Source: PubMed

ABSTRACT A conjugative plasmid from the catheter-associated urinary tract infection strain Escherichia coli MS2027 was sequenced and annotated. This 42,644-bp plasmid, designated pMAS2027, contains 58 putative genes and is most closely related to plasmids belonging to incompatibility group X (IncX1). Plasmid pMAS2027 encodes two important virulence factors: type 3 fimbriae and a type IV secretion (T4S) system. Type 3 fimbriae, recently found to be functionally expressed in E. coli, played an important role in biofilm formation. Biofilm formation by E. coli MS2027 was specifically due to expression of type 3 fimbriae and not the T4S system. The T4S system, however, accounted for the conjugative ability of pMAS2027 and enabled a non-biofilm-forming strain to grow as part of a mixed biofilm following acquisition of this plasmid. Thus, the importance of conjugation as a mechanism to spread biofilm determinants was demonstrated. Conjugation may represent an important mechanism by which type 3 fimbria genes are transferred among the Enterobacteriaceae that cause device-related infections in nosocomial settings.

0 Bookmarks
 · 
98 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lateral genetic transfer (LGT) is a major source of phenotypic innovation among bacteria. Determinants for antibiotic resistance and other adaptive traits can spread rapidly, particularly by conjugative plasmids, but also phages and natural transformation. Each successive step from the uptake of foreign DNA, its genetic recombination and regulatory integration, to its establishment in the host population presents differential barriers and opportunities. The emergence of successive multidrug-resistant strains of Staphylococcus aureus illustrates the ongoing role of LGT in the combinatorial assembly of pathogens. The dynamic interplay among hosts, vectors, DNA elements, combinations of genetic determinants and environments constructs communities of genetic exchange. These relations can be abstracted as a graph, within which an exchange community might correspond to a path, transitively closed set, clique or near-clique. We provide a set-based definition, and review the features of actual genetic exchange communities (GECs), adopting first a knowledge-driven approach based on literature, and then a synoptic data-centric bioinformatic approach. GECs are diverse, but share some common features. Differential opportunity and barriers to lateral genetic transfer create bacterial communities of exchange.
    FEMS microbiology reviews 01/2011; 35(5):707-35. · 10.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In spite of the contribution of plasmids to the spread of antibiotic resistance in human pathogens, little is known about the transferability of various drug resistance plasmids in bacterial biofilms. The goal of this study was to compare the efficiency of transfer of 19 multidrug resistance plasmids into E. coli recipient biofilms and determine the effects of biofilm age, biofilm-donor exposure time, and donor-to-biofilm attachment on this process. An E. coli recipient biofilm was exposed separately to 19 E. coli donors, each with a different plasmid, and transconjugants were determined by plate counting. With few exceptions, plasmids that transferred well in a liquid environment also showed the highest transferability in biofilms. The difference in transfer frequency between the most and least transferable plasmid was almost a million-fold. The 'invasibility' of the biofilm by plasmids, or the proportion of biofilm cells that acquired plasmids within a few hours, depended not only on the type of plasmid, but also on the time of biofilm exposure to the donor and on the ability of the plasmid donor to attach to the biofilm, yet not on biofilm age. The efficiency of donor strain attachment to the biofilm was not affected by the presence of plasmids. The most invasive plasmid was pHH2-227, which based on genome sequence analysis is a hybrid between IncU-like and IncW plasmids. The wide range in transferability in an E. coli biofilm among plasmids needs to be taken into account in our fight against the spread of drug resistance.
    Plasmid 04/2013; · 1.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The presence of antibiotics in the natural environment has been a growing issue. This presence could also account for the influence that affects microorganisms in such a way that they develop resistance against these antibiotics. The aim of this study was to evaluate whether the antibiotic resistant gene (ARG) plasmid transfer can be facilitated by the impact of 1) environmentally representative micro-contaminant concentrations in ppb (part per billion) levels and 2) donor-recipient microbial complexity (pure vs. mixed). For this purpose, the multidrug resistant plasmid, pB10, and Escherichia coli DH5α were used as a model plasmid and a model donor, respectively. Based on conjugation experiments with pure (Pseudomonas aeruginosa PAKexoT) and mixed (activated sludge) cultures as recipients, increased relative plasmid transfer frequencies were observed at ppb (μg/L) levels of tetracycline and sulfamethoxazole micro-contaminant exposure. When sludge, a more complex community, was used as a recipient, the increases of the plasmid transfer rate were always statistically significant but not always in P. aeruginosa. The low concentration (10ppb) of tetracycline exposure led to the pB10 transfer to enteric bacteria, which are clinically important pathogens.
    Science of The Total Environment 09/2013; 468-469C:813-820. · 3.16 Impact Factor

Full-text

View
1 Download
Available from