Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease.

School of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, United Kingdom.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 09/2009; 106(37):15967-72. DOI: 10.1073/pnas.0901477106
Source: PubMed

ABSTRACT To cause rice blast disease, the fungus Magnaporthe oryzae elaborates specialized infection structures called appressoria, which use enormous turgor to rupture the tough outer cuticle of a rice leaf. Here, we report the generation of a set of 22 isogenic M. oryzae mutants each differing by a single component of the predicted autophagic machinery of the fungus. Analysis of this set of targeted deletion mutants demonstrated that loss of any of the 16 genes necessary for nonselective macroautophagy renders the fungus unable to cause rice blast disease, due to impairment of both conidial programmed cell death and appressorium maturation. In contrast, genes necessary only for selective forms of autophagy, such as pexophagy and mitophagy, are dispensable for appressorium-mediated plant infection. A genome-wide analysis therefore demonstrates the importance of infection-associated, nonselective autophagy for the establishment of rice blast disease.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A sulfonylurea-resistant allele of the ILV2 gene encoding an acetolactate synthase from the rice-blast fungus Magnaporthe oryzae has been extensively used in fungal transformation as a dominant selectable marker that confers resistance to chlorimuron ethyl. We devised a novel strategy for site-specific integration of foreign DNA via Sulfonylurea Resistance Reconstitution (SRR) by replacing the native ILV2 with the sulfonylurea-resistant ILV2(SUR) variant. In contrast to random ectopic integration, SRR-based targeted incorporation at a defined locus eliminates position/orientation effects, unnecessary mutations and/or variation in gene expression. Independent transformants derived from the same SRR construct showed consistent and reproducible fluorescent signal in M. oryzae. Furthermore, the high frequency (>95%) of ILV2-specific targeted integration via SRR circumvents the need for a deficiency in non-homologous end joining (NHEJ) pathway in the recipient strain. Unlike the split-marker technique, which is particularly suitable for targeted gene replacement, the SRR strategy should prove useful for promoter analyses, gene tagging and/or complementation analyses in filamentous fungi.
    Fungal Genetics and Biology 04/2014; · 3.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The dematiaceous (melanised) fungus Scedosporium prolificans is an emerging and frequently fatal pathogen of immunocompromised humans and which, along with the closely related fungi Pseudallescheria boydii, Scedosporium apiospermum and Scedosporium aurantiacum in the Pseudallescheria-Scedosporium complex, is a contributing etiology to tsunami lung and central nervous system infections in near-drowning victims who have aspirated water laden with spores. At present, the natural habitat of the fungus is largely unknown and accurate detection methods are needed to identify environmental reservoirs of infectious propagules. In this study, we report the development of a monoclonal antibody (CA4) specific to S. prolificans, which does not cross-react with closely related fungi in the Pseudallescheria-Scedosporium complex or with a wide range of mould and yeast species pathogenic to humans. Using genome sequencing of a soil isolate and targeted gene disruption of the CA4 antigen-encoding gene, we show that mAb CA4 binds to the melanin-biosynthetic enzyme tetrahydroxynaphthalene reductase. Enzyme-deficient mutants produce orange-brown or green-brown spore suspensions compared to the black spore suspension of the wild-type strain. Using mAb CA4, and a mAb (HG12) specific to the related fungi P. boydii, Pseudallescheria apiosperma, S. apiospermum and S. aurantiacum, we demonstrate how the mAbs can be used in combination with a semi-selective isolation procedure to track these opportunistic pathogens in environmental samples containing mixed populations of human pathogenic fungi. Specificity of mAb CA4 was confirmed by sequencing of the internally transcribed spacer 1 (ITS1)-5.8S-ITS2 rRNA-encoding regions of fungi isolated from estuarine muds.
    Environmental Microbiology 03/2014; · 6.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Specific localization of appropriate sets of proteins and lipids is central to functions and integrity of organelles, which in turn underlie cellular activities of eukaryotes. Vesicle trafficking is a conserved mechanism of intracellular transport, which ensures such a specific localization to a subset of organelles. In this review article, we summarize recent advances in our understanding of how vesicle trafficking and related organelles support physiology and pathogenicity of filamentous fungi. Examples include a link between Golgi organization and polarity maintenance during hyphal tip growth, a new role of early endosomes in transport of translational machinery, involvement of endosomal/vacuolar compartments in secondary metabolite synthesis, and functions of vacuoles and autophagy in fungal development, nutrient recycling and allocation. Accumulating evidence showing the importance of unconventional secretion in fungal pathogenicity is also summarized.
    Current opinion in microbiology. 05/2014; 20C:1-9.

Full-text (2 Sources)

Available from
May 31, 2014