Chromatin poises miRNA- and protein-coding genes for expression.

Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
Genome Research (Impact Factor: 13.85). 09/2009; 19(10):1742-51. DOI: 10.1101/gr.090951.109
Source: PubMed

ABSTRACT Chromatin modifications have been implicated in the regulation of gene expression. While association of certain modifications with expressed or silent genes has been established, it remains unclear how changes in chromatin environment relate to changes in gene expression. In this article, we used ChIP-seq (chromatin immunoprecipitation with massively parallel sequencing) to analyze the genome-wide changes in chromatin modifications during activation of total human CD4(+) T cells by T-cell receptor (TCR) signaling. Surprisingly, we found that the chromatin modification patterns at many induced and silenced genes are relatively stable during the short-term activation of resting T cells. Active chromatin modifications were already in place for a majority of inducible protein-coding genes, even while the genes were silent in resting cells. Similarly, genes that were silenced upon T-cell activation retained positive chromatin modifications even after being silenced. To investigate if these observations are also valid for miRNA-coding genes, we systematically identified promoters for known miRNA genes using epigenetic marks and profiled their expression patterns using deep sequencing. We found that chromatin modifications can poise miRNA-coding genes as well. Our data suggest that miRNA- and protein-coding genes share similar mechanisms of regulation by chromatin modifications, which poise inducible genes for activation in response to environmental stimuli.

Download full-text


Available from: Kairong Cui, Jul 02, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Noncoding, endogenous microRNAs (miRNAs) are fairly well known for regulating gene expression rather than protein coding. Dysregulation of miRNA gene, either upregulated or downregulated, may lead to severe diseases or oncogenesis, especially when the miRNA disorder involves significant bioreactions or pathways. Thus, how miRNA genes are transcriptionally regulated has been highlighted as well as target recognition in recent years. In this study, a large-scale investigation of novel cis- and trans-elements was undertaken to further determine TF-miRNA regulatory relations, which are necessary to unravel the transcriptional regulation of miRNA genes. Based on miRNA and annotated gene expression profiles, the term "coTFBS" was introduced to detect common transcription factors and the corresponding binding sites within the promoter regions of each miRNA and its coexpressed annotated genes. The computational pipeline was successfully established to filter redundancy due to short sequence motifs for TFBS pattern search. Eventually, we identified more convinced TF-miRNA regulatory relations for 225 human miRNAs. This valuable information is helpful in understanding miRNA functions and provides knowledge to evaluate the therapeutic potential in clinical research. Once most expression profiles of miRNAs in the latest database are completed, TF candidates of more miRNAs can be explored by this filtering approach in the future.
    BioMed Research International 01/2014; 2014:623078. DOI:10.1155/2014/623078 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diabetic vascular complications (DVC) affecting several important organ systems of human body such as the cardiovascular system constitute a major public health problem. There is evidence demonstrating that genetic factors contribute to the risk of DVC genetic variants, structural variants, and epigenetic changes play important roles in the development of DVC. Genetic linkage studies have uncovered a number of genetic loci that may shape the risk of DVC. Genetic association studies have identified many common genetic variants for susceptibility to DVC. Structural variants such as copy number variation and interactions of gene x environment have also been detected by association analysis. Apart from the nuclear genome, mitochondrial DNA plays a critical role in regulation of development of DVC. Epigenetic studies have indicated epigenetic changes in chromatin affecting gene transcription in response to environmental stimuli, which provided a large body of evidence of regulating development of diabetes mellitus. Recently, a new window has opened on identifying rare and common genetic loci through next generation sequencing technologies. This review focusses on the current knowledge of the genetic and epigenetic basis of DVC. Ultimately, identification of genes or genetic loci, structural variants and epigenetic changes contributing to risk of or protection from DVC will help uncover the complex mechanism(s) underlying DVC, with crucial implications for the development of personalized medicine for diabetes mellitus and its complications.
    Journal of Genetics 12/2013; 92(3):677-94. DOI:10.1007/s12041-013-0288-1 · 1.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the microRNA miR-146a is an important regulator of immunological processes and contributes to the pathogenesis of certain B cell lymphoma types, in B cells the epigenetic regulation of miR-146a expresion has not been studied yet. To elucidate the mechanisms controlling miR-146a expression in B lymphoid cells we analysed epigenetic marks, including CpG methylation and histone modifications, at the miR-146a promoter in well characterized Epstein-Barr virus (EBV) positive and EBV negative B cell lines. In addition, EBV positive epithelial cell lines were also studied as controls. In cells with a silent miR-146a promoter the 5' regulatory sequences comprising a CpG island were devoid of activating histone modifications, independently of the methylation pattern of the regulatory region. The regulatory sequences flanking the inactive miR-146 promoter were hypermethylated at CpG dinucleotides in the EBV positive Burkitt's lymphoma (BL) cell lines of memory B cell phenotype (Rael and Akata), partially methylated in the mammary carcinoma cell lines C2G6 and C4A3, and completely unmethylated in the nasopharyngeal carcinoma cell line C666-1. In contrast, in EBV positive cell lines of activated B cell phenotype, and EBV negative BL cell lines the invariably unmethylated 5' regulatory sequences of active miR-146a promoters were enriched in the euchromatic histone modification marks acetylated histone H3, acetylated histone H4, and histone H3 dimethylated at lysine 4. The euchromatic histone modification marks extended over the immediate vicinity of the transcriptional initiation site to the 3' intron, too. We concluded that similarly to the promoters of protein coding genes, both DNA methylation and histone modifications contribute to the host cell dependent expression of miR-146a.
    Biochemical and Biophysical Research Communications 03/2013; 433(4). DOI:10.1016/j.bbrc.2013.03.022 · 2.28 Impact Factor