Regulation of Immature Dendritic Cell Migration by RhoA Guanine Nucleotide Exchange Factor Arhgef5

Program for Vascular Biology and Therapeutics and Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520,, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 09/2009; 284(42):28599-606. DOI: 10.1074/jbc.M109.047282
Source: PubMed

ABSTRACT There are a large number of Rho guanine nucleotide exchange factors, most of which have no known functions. Here, we carried out a short hairpin RNA-based functional screen of Rho-GEFs for their roles in leukocyte chemotaxis and identified Arhgef5 as an important factor in chemotaxis of a macrophage phage-like RAW264.7 cell line. Arhgef5 can strongly activate RhoA and RhoB and weakly RhoC and RhoG, but not Rac1, RhoQ, RhoD, or RhoV, in transfected human embryonic kidney 293 cells. In addition, Gbetagamma interacts with Arhgef5 and can stimulate Arhgef5-mediated activation of RhoA in an in vitro assay. In vivo roles of Arhgef5 were investigated using an Arhgef-5-null mouse line. Arhgef5 deficiency did not affect chemotaxis of mouse macrophages, T and B lymphocytes, and bone marrow-derived mature dendritic cells (DC), but it abrogated MIP1alpha-induced chemotaxis of immature DCs and impaired migration of DCs from the skin to lymph node. In addition, Arhgef5 deficiency attenuated allergic airway inflammation. Therefore, this study provides new insights into signaling mechanisms for DC migration regulation.

  • Source
    • "Pulldown assays using purified proteins demonstrated that the interaction between Tim and G␤␥ was direct. G␤␥ also activated Tim in a serum response element reporter assay as well as in vitro using purified proteins (Wang et al., 2009). It remains to be seen how regulation by G␤␥ is integrated into the layers of autoinhibition already mediated by the SH3 domain and N-terminal helix motif, or if it simply provides a mechanism to bypass them. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Activation of certain classes of G protein-coupled receptors (GPCRs) can lead to alterations in the actin cytoskeleton, gene transcription, cell transformation, and other processes that are known to be regulated by Rho family small-molecular-weight GTPases. Although these responses can occur indirectly via cross-talk from canonical heterotrimeric G protein cascades, it has recently been demonstrated that Dbl family Rho guanine nucleotide exchange factors (RhoGEFs) can serve as the direct downstream effectors of heterotrimeric G proteins. Heterotrimeric Galpha(12/13), Galpha(q), and Gbetagamma subunits are each now known to directly bind and regulate RhoGEFs. Atomic structures have recently been determined for several of these RhoGEFs and their G protein complexes, providing fresh insight into the molecular mechanisms of signal transduction between GPCRs and small molecular weight G proteins. This review covers what is currently known about the structure, function, and regulation of these recently recognized effectors of heterotrimeric G proteins.
    Molecular pharmacology 10/2009; 77(2):111-25. DOI:10.1124/mol.109.061234 · 4.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Myeloid cells form a first line of defense against infections. They migrate from the circulation to the infected tissues by adhering to and subsequently crossing the vascular wall. This process requires precise control and proper regulation of these interactions with the environment is therefore crucial. Podosomes are the most prominent adhesion structures in myeloid cells. Podosomes control both the adhesive and migratory properties of myeloid cells and the regulation of podosomes is key to the proper functioning of these cells. Here we discuss the regulation of podosomes by Rho GTPases, well known regulators of adhesion and migration, focusing on myeloid cells. In addition, the regulation of podosomes by GTPase regulators such as GEFs and GAPs, as well as the effects of some Rho GTPase effector pathways, will be discussed.
    European journal of cell biology 02/2011; 90(2-3):189-97. DOI:10.1016/j.ejcb.2010.05.008 · 3.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The phospholipid mediator sphingosine 1-phosphate (S1P) enhances motility and endocytosis of mature dendritic cells (DCs). We show that in vitro migration of Swap-70(-/-) bone marrow-derived DCs (BMDCs) in response to S1P and S1P-induced upregulation of endocytosis are significantly reduced. S1P-stimulated movement of Swap-70(-/-) BMDCs, specifically retraction of their trailing edge, in a collagen three-dimensional environment is impaired. These in vitro observations correlate with delayed entry into lymphatic vessels and migration to lymph nodes of skin DCs in Swap-70(-/-) mice. Expression of S1P receptors (S1P(1-3)) by wild-type and Swap-70(-/-) BMDCs is similar, but Swap-70(-/-) BMDCs fail to activate RhoA and to localize Rac1 and RhoA into areas of actin polymerization after S1P stimulus. The Rho-activating G protein Gα(i) interacts with SWAP-70, which also supports the localization of Gα(13) to membrane rafts in BMDCs. LPS-matured Swap-70(-/-) BMDCs contain significantly more active RhoA than wild-type DCs. Preinhibition of Rho activation restored migration to S1P, S1P-induced upregulation of endocytosis in mature Swap-70(-/-) BMDCs, and localization of Gα(13) to membrane rafts. These data demonstrate SWAP-70 as a novel regulator of S1P signaling necessary for DC motility and endocytosis.
    The Journal of Immunology 03/2011; 186(9):5345-55. DOI:10.4049/jimmunol.1003461 · 5.36 Impact Factor
Show more