Effects of a humic acid and its size-fractions on the bacterial community of soil rhizosphere under maize (Zea mays L.).

Istituto di Chimica Agraria ed Ambientale, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29100 Piacenza, Italy.
Chemosphere (Impact Factor: 3.14). 09/2009; 77(6):829-37. DOI: 10.1016/j.chemosphere.2009.07.077
Source: PubMed

ABSTRACT The effects of a humic acid (HA) and its size-fractions on plants carbon deposition and the structure of microbial communities in the rhizosphere soil of maize (Zea mays L.) plants were studied. Experiments were conducted in rhizobox systems that separate an upper soil-plant compartment from a lower compartment, where roots are excluded from the rhizosphere soil by a nylon membrane. The upper rhizobox compartment received the humic additions, whereas, after roots development, the rhizosphere soil in the lower compartment was sampled and sliced into thin layers. The lux-marked biosensor Pseudomonas fluorescens 10586 pUCD607 biosensor showed a significant increase in the deposition of bioavailable sources of carbon in the rhizosphere of soils when treated with bulk HA, but no response was found for treatments with the separated size-fractions. PCR-DGGE molecular fingerprintings revealed that the structure of rhizosphere microbial communities was changed by all humic treatments and that the smaller and more bioavailable size-fractions were more easily degraded by microbial activity than the bulk HA. On the other hand, highly hydrophobic and strongly associated humic molecules in the bulk HA required additional plant rhizodeposition before their bio-transformation could occur. This work highlights the importance of applying advanced biological and biotechnological methods to notice changes occurring in plant rhizodeposition and rhizosphere microbial activity. Moreover, it suggests correlations between the molecular properties of humic matter and their effects on microbial communities in the rhizosphere as mediated by root exudation.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Winter rapeseed (Brassica napus) is characterized by a low N recovery in seeds and requires high rates of fertilization to maintain yield. Its nutrient use efficiency could be improved by addition of a biostimulant such as humic acids whose physiological effects have been described previously in some plant species. However, to our knowledge, no study has focused on transcriptomic analyses to determine metabolic targets of this extract. A preliminary screening of ten humic acids revealed a significant effect of one of them (HA7) on rapeseed root growth. Microarray analysis was then used on HA7-treated or non-treated plants to characterize changes in gene expression that were further supported by physiological evidence. Stimulation of nitrogen uptake (+15% in shoots and +108% in roots) and assimilation was found to be increased in a similar manner to growth while sulfate content (+76% in shoots and +137% in roots) was more strongly stimulated leading to higher sulfate accumulation. In parallel, microscopic analysis showed an enhancement of chloroplast number per cell.
    Plant and Soil 10/2012; 359(1-2):297-319. · 3.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pig manure rice straw compost was extracted using different extraction methods, and the composition of each extraction was identified by chromatogram and spectroscopy in order to investigate plant growth promoting factors. Compared with direct extraction, aerated and non-aerated fermentation extractions were better for nutrient accumulation, especially for high molecular weight substances. Cucumber yields of aerated fermentation extraction of compost (AFEC) treatment were 16.5 and 57.6 % higher than the direct extraction of compost (DEC) and non-aerated fermentation extraction of compost (NAFEC) treatments. Humic acid-like and fulvic acid-like substances were the main components in all extracts. Furthermore, AFEC showed the most humification and aromatization. Humic substances extracted from AFEC (H-AFEC) increased shoot dry weight by 2.8 and 7.4 %, compared to humic substances extracted from DEC (H-DEC) and humic substances extracted from NAFEC (H-NAFEC). In conclusion, AFEC was the best extraction method to get more humic substances to stimulate plant growth.
    Journal of Material Cycles and Waste Management 14(4). · 0.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The bacterial population during malolactic fermentation of Tempranillo wine was studied using the polymerase chain reaction-denaturing gradient gel electrophoresis, a culture-independent method successfully used for identification and monitoring of bacterial population in different habitats included food fermentations. The results showed that Oenococcus oeni was the predominant species in the malolactic fermentation of Tempranillo wines, although the presence of Gluconobacter oxydans, Asaia siamensis, Serratia sp., and Enterobacter sp. was also observed. These results were partly coincidental with those obtained from a culture-dependent method, using a selective medium. Therefore, it may be concluded that for a more complete knowledge of the bacterial community present during malolactic fermentation of Tempranillo wine, an approach that combines a culture-independent method and a culture-dependent method would be advisable.
    Applied Microbiology and Biotechnology 03/2010; 86(5):1555-62. · 3.69 Impact Factor

Full-text (2 Sources)

Available from
May 16, 2014