Structure of the mature Streptococcal cysteine protease exotoxin mSpeB in its active dimeric form.

Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, Copenhagen, Denmark.
Journal of Molecular Biology (Impact Factor: 3.91). 09/2009; 393(3):693-703. DOI: 10.1016/j.jmb.2009.08.046
Source: PubMed

ABSTRACT Invasive infections of Streptococcus pyogenes are dependent on the cysteine protease streptococcal pyrogenic exotoxin B. Previous structures of the enzyme have not disclosed the proper active-site configuration. Here, the crystal structure of the mature enzyme is presented to 1.55 A, disclosing a homodimer. A serine from one subunit inserts into the active site of the other to donate to the oxyanion hole and coordinates the ligand proximal to the active-site cysteine. Dimerization is unique to the mature form and is clearly a prerequisite for catalysis. The present structure supports a tripartite switch system that is triggered upon dimerization and substrate binding: (1) liberation of the active-site histidine from an inactive configuration, (2) relocation of residues blocking the substrate binding pockets and (3) repositioning of two active-site tryptophans to settle in the active configuration. Based on the present structure, the active site of clan CA cysteine proteases is expanded and a detailed mechanism of the deacylation mechanism is proposed. The results may have applications for the development of protease inhibitors specific to bacterial cysteine proteases.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Streptococcus pyogenes employs an IgG specific endopeptidase, IdeS, to counteract the effector functions of specific IgG. The physiological significant step in disarming specific IgG is the cleavage of one IgG heavy chain. So far, characterizations of IdeS enzymatic activity have employed techniques that failed to differentiate between the first and the second cleavage step. The present data demonstrate that IdeS is active as a monomer and that IdeS activity follows classical Michaelis-Menten kinetics arguing against the previously proposed formation of a functional IdeS dimer. Our results show that IdeS inactivates IgG 100-fold faster than previously reported.
    FEBS letters 05/2013; · 3.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cysteine protease SpeB is secreted from Streptococcus pyogenes and has been studied as a potential virulence factor since its identification almost 70 years ago. Here, we report the crystal structures of apo mature SpeB to 1.06 Å resolution as well as complexes with the general cysteine protease inhibitor trans-epoxysuccinyl-l-leucylamido(4-guanidino)butane and a novel substrate mimetic peptide inhibitor. These structures uncover conformational changes associated with maturation of SpeB from the inactive zymogen to its active form and identify the residues required for substrate binding. With the use of a newly developed fluorogenic tripeptide substrate to measure SpeB activity, we determined IC(50) values for trans-epoxysuccinyl-l-leucylamido(4-guanidino)butane and our new peptide inhibitor and the effects of mutations within the C-terminal active site loop. The structures and mutational analysis suggest that the conformational movements of the glycine-rich C-terminal loop are important for the recognition and recruitment of biological substrates and release of hydrolyzed products.
    Journal of Biological Chemistry 05/2012; 287(29):24412-26. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A series of eight peptides corresponding to the amino acid sequence of the hinge region of IgG and 17 newly synthesized peptide analogues containing a piperidine moiety as a replacement of a glycine residue were tested as potential inhibitors of the bacterial IgG degrading enzyme of Streptococcus pyogenes , IdeS. None of the peptides showed any inhibitory activity of IdeS, but several piperidine-based analogues were identified as inhibitors. Two different analysis methods were used: an SDS-PAGE based assay to detect IgG cleavage products and a surface plasmon resonance spectroscopy based assay to quantify the degree of inhibition. To investigate the selectivity of the inhibitors for IdeS, all compounds were screened against two other related cysteine proteases (SpeB and papain). The selectivity results show that larger analogues that are active inhibitors of IdeS are even more potent as inhibitors of papain, whereas smaller analogues that are active inhibitors of IdeS inhibit neither SpeB nor papain. Two compounds were identified that exhibit high selectivity against IdeS and will be used for further studies.
    Journal of Medicinal Chemistry 02/2012; 55(6):2549-60. · 5.61 Impact Factor