Article

Vorinostat in Advanced Prostate Cancer Patients Progressing on Prior Chemotherapy (National Cancer Institute Trial 6862) Trial Results and Interleukin-6 Analysis: A study by the Department of Defense Prostate Cancer Clinical Trial Consortium and University of Chicago Phase 2 Consortium

Department of Medicine and Urology, University of Michigan, Ann Arbor, Michigan, USA.
Cancer (Impact Factor: 4.9). 09/2009; 115(23):5541-9. DOI: 10.1002/cncr.24597
Source: PubMed

ABSTRACT This phase 2 trial was designed to evaluate the efficacy of vorinostat in chemotherapy-pretreated patients with metastatic castration-resistant prostate cancer.
Patients with disease progression on 1 prior chemotherapy, a prostate-specific antigen (PSA) >or=5 ng/mL, and adequate organ function were treated with 400 mg vorinostat orally daily. The primary endpoint was the 6-month progression rate. Secondary endpoints included safety, rate of PSA decline, objective response, overall survival, and effects of vorinostat on serum interleukin-6 (IL-6) levels.
Twenty-seven eligible patients were accrued. The median number of cycles delivered was 2 (range, 1-7). All patients were taken off therapy before 6 months. The best objective response in the eligible patient was stable disease in 2 (7%) patients. No PSA decline of >or=50% was observed. There was 1 grade 4 adverse event (AE), and 44% of patients experienced grade 3 adverse events. The most common adverse events were fatigue (81%), nausea (74%), anorexia (59%), vomiting (33%), diarrhea (33%), and weight loss (26%). Median time to progression and overall survival were 2.8 and 11.7 months, respectively. Median IL-6 levels (pg/mL) were higher in patients removed from the protocol for toxicity compared with progression at all time points, including baseline (5.2 vs 2.1, P = .02), Day 15 Cycle 1 (9.5 vs 2.2, P = .01), Day 1 Cycle 2 (9.8 vs 2.2, P = .01), and end of study (11.0 vs 2.9, P = .09).
Vorinostat at this dose was associated with significant toxicities limiting efficacy assessment in this patient population. The significant association between IL-6 levels and removal from the study for toxicities warrants further investigation.

0 Followers
 · 
201 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epigenetic silencing of immune-related genes is a striking feature of the cancer genome that occurs in the process of tumorigenesis. This phenomena impacts antigen processing and antigen presentation by tumor cells and facilitates evasion of immunosurveillance. Further modulation of the tumor microenvironment by altered expression of immunosuppressive cytokines impairs antigen-presenting cells and cytolytic T-cell function. The potential reversal of immunosuppression by epigenetic modulation is therefore a promising and versatile therapeutic approach to reinstate endogenous immune recognition and tumor lysis. Pre-clinical studies have identified multiple elements of the immune system that can be modulated by epigenetic mechanisms and result in improved antigen presentation, effector T-cell function, and breakdown of suppressor mechanisms. Recent clinical studies are utilizing epigenetic therapies prior to, or in combination with, immune therapies to improve clinical outcomes.
    Frontiers in Immunology 01/2015; 6:29. DOI:10.3389/fimmu.2015.00029
  • Current Problems in Cancer 11/2014; DOI:10.1016/j.currproblcancer.2014.11.004 · 1.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epigenetics is the study of heritable alterations in gene expression that are not accompanied by the corresponding change in DNA sequence. Three interlinked epigenetic processes regulate gene expression at the level of chromatin, namely DNA methylation, nucleosomal remodeling and histone covalent modifications. Post-translational modifications that occur on certain amino acid residues of the tails of histone proteins modify chromatin structure and form the basis for "histone code". The enzymes Histone Acetyl Transferase (HAT) and Histone Deacetylase (HDAC) control the level of acetylation of histones and thereby alter gene expression. In many cancers, the balance between HAT and HDAC is altered. HDAC enzymes are grouped into four different classes namely Class I (HDAC1, HDAC2, HDAC3, and HDAC8), Class II (HDAC4, HDAC5, HDAC6, HDAC7, HDAC9, and HDAC10), Class III HDAC and Class IV (HDAC11). Histone Deacetylase Inhibitors (HDACI) exert anticancer activity by promoting acetylation of histones as well as by promoting acetylation of non-histone protein substrates. The effects of HDACI on gene transcription are complex. They cause cell cycle arrest, inhibit DNA repair, induce apoptosis and acetylate non histone proteins causing downstream alterations in gene expression. HDACI are a diverse group of compounds, which vary in structure, biological activity, and specificity. In general, HDACIs contain a zinc-binding domain, a capping group, and a straight chain linker connecting the two. They are classified into four classes namely short chain fatty acids, hydroxamic acids, cyclic peptides and synthetic benzamides. This review describes the clinical utility of HDACI as monotherapy as well as combination therapy with other treatment modalities such as chemotherapy and radiotherapy. Adverse effects and shortcomings of treatment with HDACI are also discussed in detail.

Full-text (6 Sources)

Download
108 Downloads
Available from
May 30, 2014