Article

Clinical activities of the epidermal growth factor receptor family inhibitors in breast cancer.

Manitoba Institute of Cell Biology, CancerCare Manitoba, University of Manitoba, Winnipeg, MB, Canada.
Targets & therapy 10/2007; 1(3):229-39.
Source: PubMed

ABSTRACT The epidermal growth factor (EGF) receptors play an important role in epithelial cell function. Upon stimulation of these receptors, an extensive network of signal transduction pathways is activated, including the PI3K/AKT and Ras/Erk pathways. This activation leads to cellular proliferation and survival. In breast cancer, the EGF receptor, ErbB2 (HER2/neu), can be amplified and over-expressed and this is associated with poor prognosis and drug resistance. Trastuzumab is a monoclonal antibody against ErbB2 and has demonstrated activity in the therapy of breast cancer patients with over-expression of ErbB2, both in the metastatic and adjuvant setting. Recently, a tyrosine kinase inhibitor, lapatinib, that targets both ErbB1 and ErbB2, has also shown activity in metastatic breast cancer. In this review, we will discuss the ErbB receptors and their signaling networks in breast cancer, as well as the clinical activities of trastuzumab and lapatinib in this disease.

0 Bookmarks
 · 
76 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: About 20 % of breast cancer patients over-express the human epidermal growth factor receptor-2 (HER2), which is associated with enhanced tumor malignancy. The influence of HER2 overexpression on oxidant/antioxidant parameters in humans remains unknown; therefore, we investigated the oxidative profile in women according to their HER2 status. Fifty-two controls and 52 breast cancer (BC) patients were enrolled. The BC patients were subdivided into HER-, negative for HER2 overexpression, and HER+, positive for HER2 overexpression. Oxidative stress profilling was measured by malondialdehyde (MDA), free 8-isoprostane F2, protein carbonyl content, nitric oxide (NO), total radical antioxidant parameter (TRAP), superoxide dismutase (SOD), catalase activity, and glutathione (GSH) levels. Total thiol content and lipoperoxidation were evaluated in HCC1954 and MCF-7. Cells overexpressing HER2 presented enhanced oxidative stress. Increased erythrocyte lipoperoxidation was found in BC patients, while plasma lipoperoxidation was detected in both the BC and HER- groups. Decreased MDA levels were found in the HER+ group, suggesting that HER2 overexpression may protects against plasma lipoperoxidation. No alteration was found for 8-isoprostane F2, NO, and carbonyl content. TRAP was decreased in BC patients, while HER2 overexpression increased SOD and prevented decreased GSH levels. These data help to understand the HER2 overexpression in oxidative signaling and may enable the development of new strategies for anti-HER2 therapy.
    Tumor Biology 11/2013; · 2.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present studies have examined approaches to suppress MCL-1 function in breast cancer cells, as a means to promote tumor cell death. Treatment of breast cancer cells with CDK inhibitors (flavopiridol; roscovitine) enhanced the lethality of the ERBB1 inhibitor lapatinib in a synergistic fashion. CDK inhibitors interacted with lapatinib to reduce MCL-1 expression and over-expression of MCL-1 or knock down of BAX and BAK suppressed drug combination lethality. Lapatinib-mediated inhibition of ERK1/2 and to a lesser extent AKT facilitated CDK inhibitor -induced suppression of MCL-1 levels. Treatment of cells with the BH3 domain / MCL-1 inhibitor obatoclax enhanced the lethality of lapatinib in a synergistic fashion. Knock out of MCL-1 and BCL-XL enhanced lapatinib toxicity to a similar extent as obatoclax and suppressed the ability of obatoclax to promote lapatinib lethality. Pre-treatment of cells with lapatinib or with obatoclax enhanced basal levels of BAX and BAK activity and further enhanced drug combination toxicity. In vivo tumor growth data in xenograft and syngeneic model systems confirmed our in vitro findings. Treatment of cells with CDK inhibitors enhanced the lethality of obatoclax in a synergistic fashion. Over-expression of MCL-1 or knock down of BAX and BAK suppressed the toxic interaction between CDK inhibitors and obatoclax. Obatoclax and lapatinib treatment or obatoclax and CDK inhibitor treatment or lapatinib and CDK inhibitor treatment radiosensitized breast cancer cells. Lapatinib and obatoclax interacted to suppress mammary tumor growth in vivo. Collectively our data demonstrate that manipulation of MCL-1 protein expression by CDK inhibition or inhibition of sequestering function MCL-1 by Obatoclax renders breast cancer cells more susceptible to BAX/BAK-dependent mitochondrial dysfunction and tumor cell death.
    Cancer biology & therapy 11/2010; 10(9):903-17. · 3.29 Impact Factor

Full-text

Download
1 Download
Available from