Interdependence of hypoxic and innate immune responses.

Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
Nature Reviews Immunology (Impact Factor: 33.84). 10/2009; 9(9):609-17. DOI: 10.1038/nri2607
Source: PubMed

ABSTRACT Hypoxia-inducible factor (HIF) is an important transcriptional regulator of cell metabolism and the adaptation to cellular stress caused by oxygen deficiency (hypoxia). Phagocytic cells have an essential role in innate immune defence against pathogens and this is a battle that takes place mainly in the hypoxic microenvironments of infected tissues. It has now become clear that HIF promotes the bactericidal activities of phagocytic cells and supports the innate immune functions of dendritic cells, mast cells and epithelial cells. In response to microbial pathogens, HIF expression is upregulated through pathways involving the key immune response regulator nuclear factor-kappaB, highlighting an interdependence of the innate immune and hypoxic responses to infection and tissue damage. In turn, HIF-driven innate immune responses have important consequences for both the pathogen and the host, such that the tissue microenvironment fundamentally influences susceptibility to infectious disease.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Deciphering the principles how pathogenic bacteria adapt their metabolism to a specific host microenvironment is critical for understanding bacterial pathogenesis. The enteric pathogenic Yersinia species Yersinia pseudotuberculosis and Yersinia enterocolitica and the causative agent of plague, Yersinia pestis, are able to survive in a large variety of environmental reservoirs (e.g., soil, plants, insects) as well as warm-blooded animals (e.g., rodents, pigs, humans) with a particular preference for lymphatic tissues. In order to manage rapidly changing environmental conditions and interbacterial competition, Yersinia senses the nutritional composition during the course of an infection by special molecular devices, integrates this information and adapts its metabolism accordingly. In addition, nutrient availability has an impact on expression of virulence genes in response to C-sources, demonstrating a tight link between the pathogenicity of yersiniae and utilization of nutrients. Recent studies revealed that global regulatory factors such as the cAMP receptor protein (Crp) and the carbon storage regulator (Csr) system are part of a large network of transcriptional and posttranscriptional control strategies adjusting metabolic changes and virulence in response to temperature, ion and nutrient availability. Gained knowledge about the specific metabolic requirements and the correlation between metabolic and virulence gene expression that enable efficient host colonization led to the identification of new potential antimicrobial targets.
    Frontiers in Cellular and Infection Microbiology 10/2014; 4:146. · 2.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: According to the self-nonself model of immunity, allogeneic T cells are considered as major cause of graft versus host disease (GVHD) following allogeneic stem cell transplantation (SCT). On the other hand, the danger model of immunity suggests that transplant-associated recipient tissue injury rather than donor-derived alloreactive T cells is the main cause of GVHD. What has been less appreciated are the early, both conditioning-dependent and conditioning-independent, events that impair homeostatic cellular adaptations and host-protective immune responses leading to the development of tissue-specific GVHD. The notion of gut injury precipitating in GVHD has been acknowledged by clinicians, with the shift to reduced intensity-conditioning regimens that prevent acute tissue injury and are less disruptive of tissue adaptation to T cell attack. Also, the role of host-protective immune response against pathogens in preventing GVHD has been shown by the lack of severe GVHD in germ free mice as well as an impaired anti-viral immune response during chronic GVHD. This article provides a brief review of the literature on GVHD and suggests that transplant-induced dysregulation of the protective immune response in the recipient of SCT is more important than allogeneic T cells in causing GVHD.
    Immunological investigations 10/2014; 43(8). · 1.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As an essential component of innate immunity, macrophages have multiple functions in both inhibiting or promoting cell proliferation and tissue repair. Diversity and plasticity are hallmarks of macrophages. Classical M1 and alternative M2 activation of macrophages, mirroring the Th1-Th2 polarization of T cells, represent two extremes of a dynamic changing state of macrophage activation. M1-type macrophages release cytokines that inhibit the proliferation of surrounding cells and damage contiguous tissue, and M2-type macrophages release cytokines that promote the proliferation of contiguous cells and tissue repair. M1-M2 polarization of macrophage is a tightly controlled process entailing a set of signaling pathways, transcriptional and posttranscriptional regulatory networks. An imbalance of macrophage M1-M2 polarization is often associated with various diseases or inflammatory conditions. Therefore, identification of the molecules associated with the dynamic changes of macrophage polarization and understanding their interactions is crucial for elucidating the molecular basis of disease progression and designing novel macrophage-mediated therapeutic strategies.
    Frontiers in Immunology 11/2014; 5:614.

Full-text (2 Sources)

Available from
May 29, 2014