Article

Prenatal Cocaine Exposure Causes Sex-Dependent Impairment in the Myogenic Reactivity of Coronary Arteries in Adult Offspring

Center for Perinatal Biology, Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
Hypertension (Impact Factor: 7.63). 09/2009; 54(5):1123-8. DOI: 10.1161/HYPERTENSIONAHA.109.138024
Source: PubMed

ABSTRACT Cocaine abuse is a significant problem among pregnant women. The present study tested the hypothesis that prenatal cocaine exposure impairs myogenic reactivity of coronary arteries in adult offspring. Pregnant rats received cocaine (30 mg kg(-1) day(-1)) or saline from days 15 to 21 of gestational age, and experiments were conducted in 3-month-old offspring. In pressurized coronary septal arteries, the diameter and vessel wall intracellular Ca2+ concentrations were measured simultaneously in the same tissue as a function of intraluminal pressure. Cocaine did not affect KCl-induced contractions of coronary arteries in either males or females but decreased the distensibility in male vessels. In male offspring, cocaine treatment resulted in a significant decrease in pressure-dependent myogenic contractions. Inhibition of eNOS with NG-nitro-L-arginine did not alter the myogenic response in either saline control or cocaine-treated animals. In females, cocaine caused a significant increase in pressure-dependent myogenic contractions. NG-nitro-L-arginine did not affect the myogenic response in the control animals but blocked the cocaine-mediated effect. In both males and females, the pressure-induced increases in vessel wall Ca2+ concentrations were not significantly different between cocaine and saline groups. The ratio of changes in the diameter to Ca2+ concentrations in the pressurized arteries was significantly less in male but greater in female offspring after cocaine treatment. The results suggest that prenatal cocaine exposure causes reprogramming of coronary myogenic tone via changes in the Ca2+ sensitivity in a sex-dependent manner, leading to an increased risk of dysfunction of coronary autoregulation in adult offspring.

0 Followers
 · 
78 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Growing evidence of epidemiological, clinical and experimental studies has clearly shown a close link between adverse in utero environment and the increased risk of neurological, psychological and psychiatric disorders in later life. Fetal stresses, such as hypoxia, malnutrition, and fetal exposure to nicotine, alcohol, cocaine and glucocorticoids may directly or indirectly act at cellular and molecular levels to alter the brain development and result in programming of heightened brain vulnerability to hypoxic-ischemic encephalopathy and the development of neurological diseases in the postnatal life. The underlying mechanisms are not well understood. However, glucocorticoids may play a crucial role in epigenetic programming of neurological disorders of fetal origins. This review summarizes the recent studies about the effects of fetal stress on the abnormal brain development, focusing on the cellular, molecular and epigenetic mechanisms and highlighting the central effects of glucocorticoids on programming of hypoxic-ischemic-sensitive phenotype in the neonatal brain, which may enhance the understanding of brain pathophysiology resulting from fetal stress and help explore potential targets of timely diagnosis, prevention and intervention in neonatal hypoxic-ischemic encephalopathy and other brain disorders.
    Progress in Neurobiology 05/2012; 98(2):145-65. DOI:10.1016/j.pneurobio.2012.05.010 · 10.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A growing body of evidence highlights the importance of the nutritional or other environmental stimuli during critical periods of development in the long-term programming of organ systems and homeostatic pathways of the organism. The adverse influences early in development and particularly during intrauterine life have been shown to programme the risks for adverse health outcomes in adult life. The mechanisms underlying developmental programming remain still unclear. However, increasing evidence has been accumulated indicating the important role of epigenetic regulation including DNA methylation, histone modifications and non-coding RNAs in the developmental programming of late-onset pathologies, including cancer, neurodegenerative diseases, and type 2 diabetes. The maternal substance abuse during pregnancy, including smoking, drinking and psychoactive drug intake, is one of the important factors determining the process of developmental programming in modern human beings. The impact of prenatal drug/substance exposure on infant and early childhood development is currently in the main focus. The long-term programming effects of such exposures on aging and associated pathologies, however, have been reported only rarely. The purpose of this review is to provide a summary of recent research findings which indicate that maternal substance abuse during pregnancy and/or neonatal period can programme not only a child's health status, but also can cause long-term or even life-long health outcomes via mechanisms of epigenetic memory.
    08/2013; 4(04). DOI:10.1017/S2040174413000123
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to fine particulate air pollution (PM2.5) is strongly associated with cardiovascular morbidity and mortality. Exposure to PM2.5 during pregnancy promotes reduced birthweight, and the associated adverse intrauterine conditions may also promote adult risk of cardiovascular disease. Here, we investigated the potential for in utero exposure to diesel exhaust (DE) air pollution, a major source of urban PM2.5, to promote adverse intrauterine conditions and influence adult susceptibility to disease. We exposed pregnant female C57Bl/6J mice to DE (≈300 µg/m(3) PM2.5, 6 hrs/day, 5 days/week) from embryonic day (E) 0.5 to 17.5. At E17.5 embryos were collected for gravimetric analysis and assessed for evidence of resorption. Placental tissues underwent pathological examination to assess the extent of injury, inflammatory cell infiltration, and oxidative stress. In addition, some dams that were exposed to DE were allowed to give birth to pups and raise offspring in filtered air (FA) conditions. At 10-weeks of age, body weight and blood pressure were measured. At 12-weeks of age, cardiac function was assessed by echocardiography. Susceptibility to pressure overload-induced heart failure was then determined after transverse aortic constriction surgery. We found that in utero exposure to DE increases embryo resorption, and promotes placental hemorrhage, focal necrosis, compaction of labyrinth vascular spaces, inflammatory cell infiltration and oxidative stress. In addition, we observed that in utero DE exposure increased body weight, but counterintuitively reduced blood pressure without any changes in baseline cardiac function in adult male mice. Importantly, we observed these mice to have increased susceptibility to pressure-overload induced heart failure, suggesting this in utero exposure to DE 'reprograms' the heart to a heightened susceptibility to failure. These observations provide important data to suggest that developmental exposure to air pollution may strongly influence adult susceptibility to cardiovascular disease.
    PLoS ONE 02/2014; 9(2):e88582. DOI:10.1371/journal.pone.0088582 · 3.53 Impact Factor

Full-text (2 Sources)

Download
20 Downloads
Available from
Jun 3, 2014