Breast Cancer Screening Results 5 Years after Introduction of Digital Mammography in a Population-based Screening Program

Department of Radiology, Radboud University Nijmegen Medical Centre, Geert Grootteplein 10, 6500 HB Nijmegen, the Netherlands.
Radiology (Impact Factor: 6.87). 07/2009; 253(2):353-8. DOI: 10.1148/radiol.2532090225
Source: PubMed


To compare full-field digital mammography (FFDM) using computer-aided diagnosis (CAD) with screen-film mammography (SFM) in a population-based breast cancer screening program for initial and subsequent screening examinations.
The study was approved by the regional medical ethics review board. Informed consent was not required. In a breast cancer screening facility, two of seven conventional mammography units were replaced with FFDM units. Digital mammograms were interpreted by using soft-copy reading with CAD. The same team of radiologists was involved in the double reading of FFDM and SFM images, with differences of opinion resolved in consensus. After 5 years, screening outcomes obtained with both modalities were compared for initial and subsequent screening examination findings.
A total of 367,600 screening examinations were performed, of which 56,518 were digital. Breast cancer was detected in 1927 women (317 with FFDM). At initial screenings, the cancer detection rate was .77% with FFDM and .62% with SFM. At subsequent screenings, detection rates were .55% and .49%, respectively. Differences were not statistically significant. Recalls based on microcalcifications alone doubled with FFDM. A significant increase in the detection of ductal carcinoma in situ was found with FFDM (P < .01). The fraction of invasive cancers with microcalcifications as the only sign of malignancy increased significantly, from 8.1% to 15.8% (P < .001). Recall rates were significantly higher with FFDM in the initial round (4.4% vs 2.3%, P < .001) and in the subsequent round (1.7% vs 1.2%, P < .001).
With the FFDM-CAD combination, detection performance is at least as good as that with SFM. The detection of ductal carcinoma in situ and microcalcification clusters improved with FFDM using CAD, while the recall rate increased.

Download full-text


Available from: Adriana MJ Bluekens, May 07, 2015
18 Reads
  • Source
    • "In Copenhagen, Denmark the detection rate increased when high resolution ultrasound and stereotactic breast biopsies were introduced in the early 2000s for the diagnostic assessment of women with Breast Imaging Reporting and Data System (BI-RADS) 0 screening mammograms [14]. In some [15] but not all [16] settings, DCIS detection has furthermore been found to increase with the introduction of digital mammography. The variation may also be due to variability in diagnostic criteria among pathologists both within and between countries. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background There is concern about detection of ductal carcinoma in situ (DCIS) in screening mammography. DCIS accounts for a substantial proportion of screen-detected lesions but its effect on breast cancer mortality is debated. The International Cancer Screening Network conducted a comparative analysis to determine variation in DCIS detection. Patients and Methods Data were collected during 2004–2008 on number of screening examinations, detected breast cancers, DCIS cases and Globocan 2008 breast cancer incidence rates derived from national or regional cancer registers. We calculated screen-detection rates for breast cancers and DCIS. Results Data were obtained from 15 screening settings in 12 countries; 7,176,050 screening examinations; 29,605 breast cancers and 5324 DCIS cases. The ratio between highest and lowest breast cancer incidence was 2.88 (95% confidence interval (CI) 2.76–3.00); 2.97 (95% CI 2.51–3.51) for detection of breast cancer; and 3.49 (95% CI 2.70–4.51) for detection of DCIS. Conclusions Considerable international variation was found in DCIS detection. This variation could not be fully explained by variation in incidence nor in breast cancer detection rates. It suggests the potential for wide discrepancies in management of DCIS resulting in overtreatment of indolent DCIS or undertreatment of potentially curable disease. Comprehensive cancer registration is needed to monitor DCIS detection. Efforts to understand discrepancies and standardise management may improve care.
  • Source
    • "Full-field digital mammography has been shown to have similar or higher sensitivity and higher specificity than conventional mammographic screening and may ultimately lead to a decrease of advanced cancers detected at screening [27,28]. The introduction of digital screening in the Netherlands has resulted in increased referral rates and increased overall cancer detection rates [29,30]. The ultimate impact of all these changes on the future incidence of advanced cancers at screening mammography is not yet known. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The aims of this study were to determine trends in the incidence of advanced breast cancer at screening mammography and the potential of screening to reduce it. We included a consecutive series of 351,009 screening mammograms of 85,274 women aged 50-75 years, who underwent biennial screening at a Dutch breast screening region in the period 1997-2008. Two screening radiologists reviewed the screening mammograms of all advanced screen detected and advanced interval cancers and determined whether the advanced cancer (tumor > 20 mm and/or lymph node positive tumor) had been visible at a previous screen. Interval cancers were breast cancers diagnosed in women after a negative screening examination (defined as no recommendation for referral) and before any subsequent screen. Patient and tumor characteristics were compared between women with advanced cancer and women with non-advanced cancer, including ductal carcinoma in situ. A total of 1,771 screen detected cancers and 669 interval cancers were diagnosed in 2,440 women. Rates of advanced cancer remained stable over the 12-year period; the incidence of advanced screen-detected cancers fluctuated between 1.5 - 1.9 per 1,000 screened women (mean 1.6 per 1,000) and of advanced interval cancers between 0.8 - 1.6 per 1,000 screened women (mean 1.2 per 1,000). Of the 570 advanced screen-detected cancers, 106 (18.6%) were detected at initial screening; 265 (46.5%) cancers detected at subsequent screening had been radiologically occult at the previous screening mammogram, 88 (15.4%) had shown a minimal sign, and 111 (19.5%) had been missed. Corresponding figures for advanced interval cancers were 50.9% (216/424), 24.3% (103/424) and 25.1% (105/424), respectively. At multivariate analysis, women with a ≥ 30 months interval between the latest two screens had an increased risk of screen-detected advanced breast cancer (OR 1.63, 95%CI: 1.07-2.48) and hormone replacement therapy increased the risk of advanced disease among interval cancers (OR 3.04, 95%CI: 1.22-7.53). We observed no decline in the risk of advanced breast cancer during 12 years of biennial screening mammography. The majority of these cancers could not have been prevented through earlier detection at screening.
    Breast cancer research: BCR 01/2012; 14(1):R10. DOI:10.1186/bcr3091 · 5.49 Impact Factor
  • Source
    • "Many studies have shown that conversion to digital mammography can increase screening sensitivity [1, 2]. Another known consequence is an increased recall rate [2, 3] especially in the first period after implementation [4, 5]. This increase can be explained partially by increased visibility of microcalcifications [3, 4], but differences in the appearance of digital and analogue mammograms may also be of influence. "
    [Show abstract] [Hide abstract]
    ABSTRACT: To determine the influence of local contrast optimisation on diagnostic accuracy and perceived suspiciousness of digital screening mammograms. Data were collected from a screening region in the Netherlands and consisted of 263 digital screening cases (153 recalled,110 normal). Each case was available twice, once processed with a tissue equalisation (TE) algorithm and once with local contrast optimisation (PV). All cases had digitised previous mammograms. For both algorithms, the probability of malignancy of each finding was scored independently by six screening radiologists. Perceived case suspiciousness was defined as the highest probability of malignancy of all findings of a radiologist within a case. Differences in diagnostic accuracy of the processing algorithms were analysed by comparing the areas under the receiver operating characteristic curves (A(z)). Differences in perceived case suspiciousness were analysed using sign tests. There was no significant difference in A(z) (TE: 0.909, PV 0.917, P = 0.46). For all radiologists, perceived case suspiciousness using PV was higher than using TE more often than vice versa (ratio: 1.14-2.12). This was significant (P <0.0083) for four radiologists. Optimisation of local contrast by image processing may increase perceived case suspiciousness, while diagnostic accuracy may remain similar. Variations among different image processing algorithms for digital screening mammography are large. Current algorithms still aim for optimal local contrast with a low dynamic range. Although optimisation of contrast may increase sensitivity, diagnostic accuracy is probably unchanged. Increased local contrast may render both normal and abnormal structures more conspicuous.
    European Radiology 11/2011; 22(4):908-14. DOI:10.1007/s00330-011-2320-2 · 4.01 Impact Factor
Show more