Neural response to specific components of fearful faces in healthy and schizophrenic adults

King's College London Institute of Psychiatry, London, UK.
NeuroImage (Impact Factor: 6.13). 09/2009; 49(1):939-46. DOI: 10.1016/j.neuroimage.2009.08.030
Source: PubMed

ABSTRACT Perception of fearful faces is associated with functional activation of cortico-limbic structures, which has been found altered in individuals with psychiatric disorders such as schizophrenia, autism and major depression. The objective of this study was to isolate the brain response to the features of standardized fearful faces by incorporating principal component analysis (PCA) into the analysis of neuroimaging data of healthy volunteers and individuals with schizophrenia. At the first stage, the visual characteristics of morphed fearful facial expressions (FEEST, Young et al., 2002) were classified with PCA, which produced seven orthogonal factors, with some of them related to emotionally salient facial features (eyes, mouth, brows) and others reflecting non-salient facial features. Subsequently, these PCA-based factors were included into the functional magnetic resonance imaging (fMRI) analysis of 63 healthy volunteers and 32 individuals with schizophrenia performing a task that involved implicit processing of FEEST stimuli. In healthy volunteers, significant neural response was found to visual characteristics of eyes, mouth or brows. In individuals with schizophrenia, PCA-based analysis enabled us to identify several significant clusters of activation that were not detected by the standard approach. These clusters were implicated in processing of visual and emotional information and were attributable to the perception of eyes and brows. PCA-based analysis could be useful in isolating brain response to salient facial features in psychiatric populations.


Available from: Wissam El-Hage, May 30, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Evidence of the brain network involved in cognitive dysfunction has been inconsistent for major depressive disorder (MDD), especially during early stage of MDD. This study seeks to examine abnormal cognition connectivity network (CCN) in MDD within the whole brain. Sixteen patients with MDD and 16 health controls were scanned during resting-state using 3.0 T functional magnetic resonance imaging (fMRI). All patients were first episode without any history of antidepressant treatment. Both the left and right dorsolateral prefrontal cortex (DLPFC) were used as individual seeds to identify CCN by the seed-target correlation analysis. Two sample t test was used to calculate between-group differences in CCN using fisher z-transformed correlation maps. The CCN was constructed by bilateral seed DLPFC in two groups separately. Depressed subjects exhibited significantly increased functional connectivity (FC) by left DLPFC in one cluster, overlapping middle frontal gyrus, BA7, BA43, precuneus, BA6, BA40, superior temporal gyrus, BA22, inferior parietal lobule, precentral gyrus, BA4 and cingulate gyrus in left cerebrum. Health controls did not show any cluster with significantly greater FC compared to depressed subjects in left DLPFC network. There was no significant difference of FC in right DLPFC network between depressed subjects and the health controls. There are differences in CCN during early stage of MDD, as identified by increased FCs among part of frontal gyrus, parietal cortex, cingulate cortex, and BA43, BA22, BA4 with left DLPFC. These brain areas might be involved in the underlying mechanisms of cognitive dysfunction in MDD.
    Psychiatry investigation 04/2015; 12(2):227-34. DOI:10.4306/pi.2015.12.2.227 · 1.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective. We sought to use the regional homogeneity (ReHo) approach as an index in the resting-state functional MRI to investigate the gender differences of spontaneous brain activity within cerebral cortex and resting-state networks (RSNs) in young adult healthy volunteers. Methods. One hundred and twelve healthy volunteers (56 males, 56 females) participated in the resting-state fMRI scan. The ReHo mappings in the cerebral cortex and twelve RSNs of the male and female groups were compared. Results. We found statistically significant gender differences in the primary visual network (PVN) (P < 0.004, with Bonferroni correction) and left attention network (LAtN), default mode network (DMN), sensorimotor network (SMN), executive network (EN), and dorsal medial prefrontal network (DMPFC) as well (P < 0.05, uncorrected). The male group showed higher ReHo in the left precuneus, while the female group showed higher ReHo in the right middle cingulate gyrus, fusiform gyrus, left inferior parietal lobule, precentral gyrus, supramarginal gyrus, and postcentral gyrus. Conclusions. Our results suggested that men and women had regional specific differences during the resting-state. The findings may improve our understanding of the gender differences in behavior and cognition from the perspective of resting-state brain function.
    BioMed Research International 01/2015; 2015:183074. DOI:10.1155/2015/183074 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Major depressive disorder (MDD) is accompanied by atypical brain structure. This study first presents the alterations in the cortical surface of patients with MDD using multidimensional structural patterns that reflect different neurodevelopment. Sixteen first-episode, untreated patients with MDD and 16 matched healthy controls underwent a magnetic resonance imaging (MRI) scan. The cortical maps of thickness, surface area, and gyrification were examined using the surface-based morphometry (SBM) approach. Increase of cortical thickness was observed in the right posterior cingulate region and the parietal cortex involving the bilateral inferior, left superior parietal and right paracentral regions, while decreased thickness was noted in the parietal cortex including bilateral pars opercularis and left precentral region, as well as the left rostral-middle frontal regions in patients with MDD. Likewise, increased or decreased surface area was found in five sub-regions of the cingulate gyrus, parietal and frontal cortices (e.g., bilateral inferior parietal and superior frontal regions). In addition, MDD patients exhibited a significant hypergyrification in the right precentral and supramarginal region. This integrated structural assessment of cortical surface suggests that MDD patients have cortical alterations of the frontal, parietal and cingulate regions, indicating a vulnerability to MDD during earlier neurodevelopmental process.
    PLoS ONE 03/2015; 10(3):e0120704. DOI:10.1371/journal.pone.0120704 · 3.53 Impact Factor