Article

General Anesthetic Binding to Neuronal alpha 4 beta 2 Nicotinic Acetylcholine Receptor and Its Effects on Global Dynamics

Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
The Journal of Physical Chemistry B (Impact Factor: 3.38). 09/2009; 113(37):12581-9. DOI: 10.1021/jp9039513
Source: PubMed

ABSTRACT The neuronal alpha4beta2 nicotinic acetylcholine receptor (nAChR) is a target for general anesthetics. Currently available experimental structural information is inadequate to understand where anesthetics bind and how they modulate the receptor motions essential to function. Using our published open-channel structure model of alpha4beta2 nAChR, we identified and evaluated six amphiphilic interaction sites for the volatile anesthetic halothane via flexible ligand docking and subsequent 20-ns molecular dynamics simulations. Halothane binding energies ranged from -6.8 to -2.4 kcal/mol. The primary binding sites were located at the interface of extracellular and transmembrane domains, where halothane perturbed conformations of, and widened the gap among, the Cys loop, the beta1-beta2 loop, and the TM2-TM3 linker. The halothane with the highest binding affinity at the interface between the alpha4 and beta2 subunits altered interactions between the protein and nearby lipids by competing for hydrogen bonds. Gaussian network model analyses of the alpha4beta2 nAChR structures at the end of 20-ns simulations in the absence or presence of halothane revealed profound changes in protein residue mobility. The concerted motions critical to protein function were also perturbed considerably. Halothane's effect on protein dynamics was not confined to the residues adjacent to the binding sites, indicating an action on a more global scale.

0 Followers
 · 
73 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While small molecules have been used to induce anesthesia in a clinical setting for well over a century, a detailed understanding of the molecular mechanism remains elusive. In this study, we utilize ab initio calculations to develop a novel set of CHARMM-compatible parameters for the ubiquitous modern anesthetics desflurane, isoflurane, sevoflurane, and propofol for use in molecular dynamics (MD) simulations. The parameters generated were rigorously tested against known experimental physicochemical properties including dipole moment, density, enthalpy of vaporization, and free energy of solvation. In all cases, the anesthetic parameters were able to reproduce experimental measurements, signifying the robustness and accuracy of the atomistic models developed. The models were then used to study the interaction of anesthetics with the membrane. Calculation of the potential of mean force for inserting the molecules into a POPC bilayer revealed a distinct energetic minimum of 4-5 kcal/mol relative to aqueous solution at the level of the glycerol backbone in the membrane. The location of this minimum within the membrane suggests that anesthetics partition to the membrane prior to binding their ion channel targets, giving context to the Meyer-Overton correlation. Moreover, MD simulations of these drugs in the membrane give rise to computed membrane structural parameters, including atomic distribution, deuterium order parameters, dipole potential, and lateral stress profile, that indicate partitioning of anesthetics into the membrane at the concentration range studied here, which does not appear to perturb the structural integrity of the lipid bilayer. These results signify that an indirect, membrane-mediated mechanism of channel modulation is unlikely.
    The Journal of Physical Chemistry B 10/2014; 118(42). DOI:10.1021/jp502716m · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The tractable, layered architecture of the olfactory bulb (OB), and its function as a relay between odor input and higher cortical processing, makes it an attractive model to study how sensory information is processed at a synaptic and circuit level. The OB is also the recipient of strong neuromodulatory inputs, chief among them being the central cholinergic system. Cholinergic axons from the basal forebrain modulate the activity of various cells and synapses within the OB, particularly the numerous dendrodendritic synapses, resulting in highly variable responses of OB neurons to odor input that is dependent upon the behavioral state of the animal. Behavioral, electrophysiological, anatomical, and computational studies examining the function of muscarinic and nicotinic cholinergic receptors expressed in the OB have provided valuable insights into the role of acetylcholine (ACh) in regulating its function. We here review various studies examining the modulation of OB function by cholinergic fibers and their target receptors, and provide putative models describing the role that cholinergic receptor activation might play in the encoding of odor information.
    Frontiers in Synaptic Neuroscience 01/2014; 6:21. DOI:10.3389/fnsyn.2014.00021
  • [Show abstract] [Hide abstract]
    ABSTRACT: To determine the structural components underlying differences in affinity, potency, and selectivity of varenicline for several human (h) nicotinic acetylcholine receptors (nAChRs), functional and structural experiments were performed. The Ca(2+) influx results established that: (a) varenicline activates (μM range) nAChR subtypes with the following rank sequence: hα7>hα4β4>hα4β2>hα3β4≫>hα1β1γδ; (b) varenicline binds to nAChR subtypes with the following affinity order (nM range): hα4β2~hα4β4>hα3β4>hα7≫>Torpedo α1β1γδ. The molecular docking results indicating that more hydrogen bond interactions are apparent for α4-containing nAChRs in comparison to other nAChRs may explain the observed higher affinity; and that (c) varenicline is a full agonist at hα7 (101%) and hα4β4 (93%), and a partial agonist at hα4β2 (20%) and hα3β4 (45%), relative to (±)-epibatidine. The allosteric sites found at the extracellular domain (EXD) of hα3β4 and hα4β2 nAChRs could explain the partial agonistic activity of varenicline on these nAChR subtypes. Molecular dynamics simulations show that the interaction of varenicline to each allosteric site decreases the capping of Loop C at the hα4β2 nAChR, suggesting that these allosteric interactions limit the initial step in the gating process. In conclusion, we propose that in addition to hα4β2 nAChRs, hα4β4 nAChRs can be considered as potential targets for the clinical activity of varenicline, and that the allosteric interactions at the hα3β4- and hα4β2-EXDs are alternative mechanisms underlying partial agonism at these nAChRs. Copyright © 2014 Elsevier B.V. All rights reserved.
    Biochimica et Biophysica Acta (BBA) - Biomembranes 12/2014; 1848(2). DOI:10.1016/j.bbamem.2014.11.003 · 3.43 Impact Factor

Preview

Download
0 Downloads
Available from