Functional architecture of higher plant photosystem II supercomplexes.

Faculté des Sciences Luminy, Laboratoire de Génétique et Biophysique des Plantes, Université Aix Marseille, Marseille, France.
The EMBO Journal (Impact Factor: 9.82). 09/2009; 28(19):3052-63. DOI: 10.1038/emboj.2009.232
Source: PubMed

ABSTRACT Photosystem II (PSII) is a large multiprotein complex, which catalyses water splitting and plastoquinone reduction necessary to transform sunlight into chemical energy. Detailed functional and structural studies of the complex from higher plants have been hampered by the impossibility to purify it to homogeneity. In this work, homogeneous preparations ranging from a newly identified particle composed by a monomeric core and antenna proteins to the largest C(2)S(2)M(2) supercomplex were isolated. Characterization by biochemical methods and single particle electron microscopy allowed to relate for the first time the supramolecular organization to the protein content. A projection map of C(2)S(2)M(2) at 12 A resolution was obtained, which allowed determining the location and the orientation of the antenna proteins. Comparison of the supercomplexes obtained from WT and Lhcb-deficient plants reveals the importance of the individual subunits for the supramolecular organization. The functional implications of these findings are discussed and allow redefining previous suggestions on PSII energy transfer, assembly, photoinhibition, state transition and non-photochemical quenching.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A crucial component of protein homeostasis in cells is the repair of damaged proteins. The repair of oxygen-evolving photosystem II (PS II) supercomplexes in plant chloroplasts is a prime example of a very efficient repair process that evolved in response to the high vulnerability of PS II to photooxidative damage, exacerbated by high-light (HL) stress. Significant progress in recent years has unraveled individual components and steps that constitute the PS II repair machinery, which is embedded in the thylakoid membrane system inside chloroplasts. However, an open question is how a certain order of these repair steps is established and how unwanted back-reactions that jeopardize the repair efficiency are avoided. Here, we report that spatial separation of key enzymes involved in PS II repair is realized by subcompartmental-ization of the thylakoid membrane, accomplished by the forma-tion of stacked grana membranes. The spatial segregation of kinases, phosphatases, proteases, and ribosomes ensures a certain order of events with minimal mutual interference. The margins of the grana turn out to be the site of protein degradation, well separated from active PS II in grana core and de novo protein synthesis in unstacked stroma lamellae. Furthermore, HL induces a partial conversion of stacked grana core to grana margin, which leads to a controlled access of proteases to PS II. Our study suggests that the origin of grana in evolution ensures high repair efficiency, which is essential for PS II homeostasis. photosynthesis | photoinhibition | PS II repair cycle | thylakoid membrane |
    Proceedings of the National Academy of Sciences 10/2014; · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Minor light-harvesting complexes (Lhcs) CP24, CP26 and CP29 occupy a position in photosystem II (PSII) of plants between the major light-harvesting complexes LHCII and the PSII core subunits. Lack of minor Lhcs in vivo causes impairment of PSII organization, and negatively affects electron transport rates and photoprotection capacity. Here we used picosecond-fluorescence spectroscopy to study excitation-energy transfer (EET) in thylakoid membranes isolated from Arabidopsisthaliana wild-type plants and knockout lines depleted of either two (koCP26/24 and koCP29/24) or all minor Lhcs (NoM). In the absence of all minor Lhcs, the functional connection of LHCII to the PSII cores appears to be seriously impaired whereas the “disconnected” LHCII is substantially quenched. For both double knock-out mutants, excitation trapping in PSII is faster than in NoM thylakoids but slower than in WT thylakoids. In NoM thylakoids, the loss of all minor Lhcs is accompanied by an over-accumulation of LHCII, suggesting a compensating response to the reduced trapping efficiency in limiting light, which leads to a photosynthetic phenotype resembling that of low-light-acclimated plants. Finally, fluorescence kinetics and biochemical results show that the missing minor complexes are not replaced by other Lhcs, implying that they are unique among the antenna subunits and crucial for the functioning and macro-organization of PSII.
    Biochimica et Biophysica Acta (BBA) - Bioenergetics 10/2014; · 4.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Photosynthetic light harvesting in plants is regulated by phosphorylation-driven state transitions: functional redistributions of the major trimeric light-harvesting complex II (LHCII) to balance the relative excitation of photosystem I and photosystem II. State transitions are driven by reversible LHCII phosphorylation by the STN7 kinase and PPH1/TAP38 phosphatase. LHCII trimers are composed of Lhcb1, Lhcb2, and Lhcb3 proteins in various trimeric configurations. Here, we show that despite their nearly identical amino acid composition, the functional roles of Lhcb1 and Lhcb2 are different but complementary. Arabidopsis thaliana plants lacking only Lhcb2 contain thylakoid protein complexes similar to wild-type plants, where Lhcb2 has been replaced by Lhcb1. However, these do not perform state transitions, so phosphorylation of Lhcb2 seems to be a critical step. In contrast, plants lacking Lhcb1 had a more profound antenna remodeling due to a decrease in the amount of LHCII trimers influencing thylakoid membrane structure and, more indirectly, state transitions. Although state transitions are also found in green algae, the detailed architecture of the extant seed plant light-harvesting antenna can now be dated back to a time after the divergence of the bryophyte and spermatophyte lineages, but before the split of the angiosperm and gymnosperm lineages more than 300 million years ago.
    The Plant cell. 09/2014;

Full-text (2 Sources)

Available from
May 21, 2014