Legionella pneumophila - Host Interactions: Insights Gained from Comparative Genomics and Cell Biology.

Institut Pasteur, Unité Biologie des Bactéries Intracellulaires and CNRS URA 2171, Paris, France.
Genome dynamics 02/2009; 6:170-86. DOI: 10.1159/000235770
Source: PubMed


Legionella pneumophila is the etiological agent of Legionnaires' disease and of the less acute disease Pontiac fever. It is a Gram-negative bacterium present in fresh and artificial water environments that replicates in protozoan hosts and is also found in biofilms. Replication within protozoa is essential for the survival of the bacterium. The last years have seen a giant step forward in the genomics of L. pneumophila. The establishment and publication of the complete genome sequences of three clinical L. pneumophila isolates in 2004 and a fourth in 2007 has paved the way for major breakthroughs in understanding the biology of L. pneumophila in particular and Legionella in general. Sequence analysis identified several specific features of Legionella: (i) an extraordinary genetic diversity among the different isolates and (ii) the presence of an unexpected high number and variety of eukaryotic-like proteins, predicted to be involved in the exploitation of the host cellular processes by mimicking specific eukaryotic functions. In this chapter, we will first discuss the insights gained from genomics by highlighting the characteristic features and common traits of the four L. pneumophila genomes obtained through genome analysis and comparison and then we will focus on the newest results obtained by functional analysis of different eukaryotic-like proteins and describe their involvementin the pathogenicity of L. pneumophila.

6 Reads
  • Source
    • "Cy C,Ph, P, L, A Lomma et al., 2009 The sub-cellular localization of the proteins was predicted by " ClubSub-P " . Cy, cytoplasmic; CM, cytoplasmic membrane; Ex, extracellular; U, uncertain. "
    [Show abstract] [Hide abstract]
    ABSTRACT: L. pneumophila-containing vacuoles (LCVs) exclude endocytic and lysosomal markers in human macrophages and protozoa. We screened a L. pneumophila mini-Tn10 transposon library for mutants, which fail to inhibit the fusion of LCVs with lysosomes by loading of the lysosomal compartment with colloidal iron dextran, mechanical lysis of infected host cells, and magnetic isolation of LCVs that have fused with lysosomes. In silico analysis of the mutated genes, D. discoideum plaque assays and infection assays in protozoa and U937 macrophage-like cells identified well established as well as novel putative L. pneumophila virulence factors. Promising candidates were further analyzed for their co-localization with lysosomes in host cells using fluorescence microscopy. This approach corroborated that the O-methyltransferase, PilY1, TPR-containing protein and polyketide synthase (PKS) of L. pneumophila interfere with lysosomal degradation. Competitive infections in protozoa and macrophages revealed that the identified PKS contributes to the biological fitness of pneumophila strains and may explain their prevalence in the epidemiology of Legionnaires’ disease.
    International Journal of Medical Microbiology 08/2014; 304(8). DOI:10.1016/j.ijmm.2014.08.010 · 3.61 Impact Factor
  • Source
    • "One of the most striking features of the L. pneumophila genome is the number and type of genes predicted to encode products that share similarity with eukaryotic proteins (Cazalet et al., 2004; Gomez-Valero et al., 2009; Lomma et al., 2009; Schroeder et al., 2010). For example, L. pneumophila produces two enzymes that belong to the mammalian CD39 family of ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) (Sansom et al., 2007; Galka et al., 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The detection of Legionella pneumophila in environmental and clinical samples is frequently performed by PCR amplification of the mip and/or 16S rRNA genes. Combined with DNA sequencing, these two genetic loci can be used to distinguish different species of Legionella and identify L. pneumophila. However, the recent Legionella genome sequences have opened up hundreds of possibilities for the development of new molecular targets for detection and diagnosis. Ongoing comparative genomics has the potential to fine tune the identification of Legionella species and serogroups by combining specific and general genetic targets. For example, the coincident detection of LPS biosynthesis genes and virulence genes may allow the differentiation of both pathogen and serogroup without the need for nucleotide sequencing. We tested this idea using data derived from a previous genomic subtractive hybridization we performed between L. pneumophila serogroup 1 and L. micdadei. Although not yet formally tested, these targets serve as an example of how comparative genomics has the potential to improve the scope and accuracy of Legionella molecular detection if embraced by laboratories undertaking Legionella surveillance.
    Frontiers in Microbiology 11/2010; 1:123. DOI:10.3389/fmicb.2010.00123 · 3.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The genus Legionella contains more than 50 species, of which at least 24 have been associated with human infection. The best-characterized member of the genus, Legionella pneumophila, is the major causative agent of Legionnaires' disease, a severe form of acute pneumonia. L. pneumophila is an intracellular pathogen, and as part of its pathogenesis, the bacteria avoid phagolysosome fusion and replicate within alveolar macrophages and epithelial cells in a vacuole that exhibits many characteristics of the endoplasmic reticulum (ER). The formation of the unusual L. pneumophila vacuole is a feature of its interaction with the host, yet the mechanisms by which the bacteria avoid classical endosome fusion and recruit markers of the ER are incompletely understood. Here we review the factors that contribute to the ability of L. pneumophila to infect and replicate in human cells and amoebae with an emphasis on proteins that are secreted by the bacteria into the Legionella vacuole and/or the host cell. Many of these factors undermine eukaryotic trafficking and signaling pathways by acting as functional and, in some cases, structural mimics of eukaryotic proteins. We discuss the consequences of this mimicry for the biology of the infected cell and also for immune responses to L. pneumophila infection.
    Clinical microbiology reviews 04/2010; 23(2):274-98. DOI:10.1128/CMR.00052-09 · 17.41 Impact Factor
Show more