CD133 identifies a human bone marrow stem/progenitor cell sub-population with a repertoire of secreted factors that protect against stroke.

Department of Medicine, Stem Cell Core, University of Vermont, Colchester, Vermont 05446, USA.
Molecular Therapy (Impact Factor: 6.43). 09/2009; 17(11):1938-47. DOI: 10.1038/mt.2009.185
Source: PubMed

ABSTRACT The reparative properties of bone marrow stromal cells (BMSCs) have been attributed in part to the paracrine action of secreted factors. We isolated typical human BMSCs by plastic adherence and compared them with BMSC sub-populations isolated by magnetic-activated cell sorting against CD133 (CD133-derived BMSCs, CD133BMSCs) or CD271 [p75 low-affinity nerve growth factor receptor (p75LNGFR), p75BMSCs]. Microarray assays of expressed genes, and enzyme-linked immunosorbent assays (ELISAs) of selected growth factors and cytokines secreted under normoxic and hypoxic conditions demonstrated that the three transit-amplifying progenitor cell populations were distinct from one another. CD133BMSC-conditioned medium (CdM) was superior to p75BMSC CdM in protecting neural progenitor cells against cell death during growth factor/nutrient withdrawal. Intracardiac (arterial) administration of concentrated CD133BMSC CdM provided neuroprotection and significantly reduced cortical infarct volumes in mice following cerebral ischemia. In support of the paracrine hypothesis for BMSC action, intra-arterial infusion of CD133BMSC CdM provided significantly greater protection against stroke compared with the effects of CD133BMSC (cell) administration. CdM from CD133BMSCs also provided superior protection against stroke compared with that conferred by CdM from p75BMSCs or typically isolated BMSCs. CD133 identifies a sub-population of nonhematopoietic stem/progenitor cells from adult human bone marrow, and CD133BMSC CdM may provide neuroprotection for patients with stroke.

Download full-text


Available from: Joni Ylostalo, Apr 15, 2014
1 Follower
  • Source
    • "Cerebral ischemia infarction—1 day—IC/intracardiac (LV) injection immunodeficient mice (i) Hu-BM-MSC (ii) Hu-BM-CD133 (iii) Hu-BM-p75 (iv) Hu-fibro Reduced cortical infarct volume (huBM-CD133-CM < huBM-MSC-CM < hufibroCM < huBM-p75CM) [25] Fluid percussion-TBI—direct IV jugular vein Male SD rat Hu-BM-MSC Reduced neuron loss, A, neuron A, infarction volume, and motor deficit Increased VEGF(+) cells [26] "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background. Stem cell-derived conditioned medium has a promising prospect to be produced as pharmaceuticals for regenerative medicine. Objective. To investigate various methods to obtain stem cell-derived conditioned medium (CM) to get an insight into their prospect of application in various diseases. Methods. Systematic review using keywords "stem cell" and "conditioned medium" or "secretome" and "therapy." Data concerning treated conditions/diseases, type of cell that was cultured, medium and supplements to culture the cells, culture condition, CM processing, growth factors and other secretions that were analyzed, method of application, and outcome were noted, grouped, tabulated, and analyzed. Results. Most of CM using studies showed good results. However, the various CM, even when they were derived from the same kind of cells, were produced by different condition, that is, from different passage, culture medium, and culture condition. The growth factor yields of the various types of cells were available in some studies, and the cell number that was needed to produce CM for one application could be computed. Conclusion. Various stem cell-derived conditioned media were tested on various diseases and mostly showed good results. However, standardized methods of production and validations of their use need to be conducted.
    BioMed Research International 09/2014; 2014:965849. DOI:10.1155/2014/965849 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The therapeutic effect of adipose-derived mesenchymal stem cells (ADMSCs) on brain infarction area (BIA) and neurological status in a rat model of acute ischemic stroke (IS) was investigated. Adult male Sprague-Dawley (SD) rats (n = 30) were divided into IS plus intra-venous 1 mL saline (at 0, 12 and 24 h after IS induction) (control group) and IS plus intra-venous ADMSCs (2.0 x 106) (treated interval as controls) (treatment group) after occlusion of distal left internal carotid artery. The rats were sacrificed and brain tissues were harvested on day 21 after the procedure. The results showed that BIA was larger in control group than in treatment group (p < 0.001). The sensorimotor functional test (Corner test) identified a higher frequency of turning movement to left in control group than in treatment group (p < 0.05). mRNA expressions of Bax, caspase 3, interleukin (IL)-18, toll-like receptor-4 and plasminogen activator inhibitor-1 were higher, whereas Bcl-2 and IL-8/Gro were lower in control group than in treatment group (all p < 0.05). Western blot demonstrated a lower CXCR4 and stromal-cell derived factor-1 (SDF-1) in control group than in treatment group (all p < 0.01). Immunohistofluorescent staining showed lower expressions of CXCR4, SDF-1, von Willebran factor and doublecortin, whereas the number of apoptotic nuclei on TUNEL assay was higher in control group than in treatment group (all p < 0.001). Immunohistochemical staining showed that cellular proliferation and number of small vessels were lower but glial fibrillary acid protein was higher in control group than in treatment group (all p < 0.01). ADMSC therapy significantly limited BIA and improved sensorimotor dysfunction after acute IS.
    Journal of Translational Medicine 06/2010; 8:63. DOI:10.1186/1479-5876-8-63 · 3.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: CD133 is widely used as a marker for the isolation and characterization of normal and cancer stem cells. The dynamic alternation of CD133 glycosylation contributes to the isolation of normal and cancer stem cells, and is supposed to be associated with cell differentiation. Although CD133 has been identified as a N-glycosylated protein, the specific glycosylation status of CD133 remain unclear. Here, we found that CD133 could be sialylated in neural stem cells and glioma-initiating cells, and the sialyl residues attach to CD133 N-glycan terminal via alpha2,3-linkage. Furthermore, desialylation of CD133 by neuraminidase specifically accelerates its degradation in lysosomes-dependent pathway. Taken together, our results characterized CD133 as an alpha2,3-sialylated glycoprotein and revealed that the sialylation modification contributes to the stability of CD133 protein, providing clues to understanding the function of CD133 molecular and to understanding the utility of glycosylated CD133 epitopes in defining neural stem cells and tumour-initiating cells.
    Journal of Biochemistry 09/2010; 148(3):273-80. DOI:10.1093/jb/mvq062 · 3.07 Impact Factor
Show more