Article

CD133 identifies a human bone marrow stem/progenitor cell sub-population with a repertoire of secreted factors that protect against stroke.

Department of Medicine, Stem Cell Core, University of Vermont, Colchester, Vermont 05446, USA.
Molecular Therapy (Impact Factor: 7.04). 09/2009; 17(11):1938-47. DOI: 10.1038/mt.2009.185
Source: PubMed

ABSTRACT The reparative properties of bone marrow stromal cells (BMSCs) have been attributed in part to the paracrine action of secreted factors. We isolated typical human BMSCs by plastic adherence and compared them with BMSC sub-populations isolated by magnetic-activated cell sorting against CD133 (CD133-derived BMSCs, CD133BMSCs) or CD271 [p75 low-affinity nerve growth factor receptor (p75LNGFR), p75BMSCs]. Microarray assays of expressed genes, and enzyme-linked immunosorbent assays (ELISAs) of selected growth factors and cytokines secreted under normoxic and hypoxic conditions demonstrated that the three transit-amplifying progenitor cell populations were distinct from one another. CD133BMSC-conditioned medium (CdM) was superior to p75BMSC CdM in protecting neural progenitor cells against cell death during growth factor/nutrient withdrawal. Intracardiac (arterial) administration of concentrated CD133BMSC CdM provided neuroprotection and significantly reduced cortical infarct volumes in mice following cerebral ischemia. In support of the paracrine hypothesis for BMSC action, intra-arterial infusion of CD133BMSC CdM provided significantly greater protection against stroke compared with the effects of CD133BMSC (cell) administration. CdM from CD133BMSCs also provided superior protection against stroke compared with that conferred by CdM from p75BMSCs or typically isolated BMSCs. CD133 identifies a sub-population of nonhematopoietic stem/progenitor cells from adult human bone marrow, and CD133BMSC CdM may provide neuroprotection for patients with stroke.

0 Bookmarks
 · 
70 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Wnt signalling pathways regulate proliferation, motility and survival in a variety of human cell types. Dickkopf 1 (DKK1) gene codes for a secreted Wnt inhibitory factor. It functions as tumour suppressor gene in breast cancer and as a pro-apoptotic factor in glioma cells. In this study, we aimed to demonstrate whether the different expression of DKK1 in human glioma-derived cells is dependent on microenvironmental factors like hypoxia and regulated by the intercellular crosstalk with bone-marrow-derived mesenchymal stem cells (bmMSCs). Glioma cell line U87-MG, three cell lines from human glioblastoma grade IV (glioma-derived mesenchymal stem cells) and three bmMSCs were selected for the experiment. The expression of DKK1 in cell lines under normoxic/hypoxic environment or co-culture condition was measured using real-time PCR and enzyme-linked immunoadsorbent assay. The effect of DKK1 on cell migration and proliferation was evaluated by in vitro wound healing assays and sulphorhodamine assays, respectively. Glioma-derived cells U87-MG displayed lower DKK1 expression compared with bmMSCs. Hypoxia led to an overexpression of DKK1 in bmMSCs and U87-MG when compared to normoxic environment, whereas co-culture of U87-MG with bmMSCs induced the expression of DKK1 in both cell lines. Exogenous recombinant DKK1 inhibited cell migration on all cell lines, but did not have a significant effect on cell proliferation of bmMSCs and glioma cell lines. In this study, we showed for the first time that the expression of DKK1 was hypoxia dependent in human malignant glioma cell lines. The induction of DKK1 by intracellular crosstalk or hypoxia stimuli sheds light on the intense adaption of glial tumour cells to environmental alterations.
    Journal of Cancer Research and Clinical Oncology 04/2014; · 2.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective. We studied circulating precursor cells (CPC) in type 2 diabetes mellitus (T2DM) with neuropathic foot lesions with or without critical limb ischemia and relationships between endothelial precursor cells (EPC) and peripheral neuropathy. Methods and Subjects. We measured peripheral blood CD34, CD133, and CD45 markers for CPC and KDR, CD31 markers for EPC by citofluorimetry and systemic neural nociceptor CGRP (calcitonin gene related protein) by ELISA in 8 healthy controls (C) and 62 T2DM patients: 14 with neuropathy (N), 20 with neuropathic foot lesions (N1), and 28 with neuroischemic recent revascularized (N2) foot lesions. Timing of lesions was: acute (until 6 weeks), healed, and not healed. Results. CD34+ and CD133+ were reduced in N, N1, and N2 versus C, and CD34+ were lower in N2 versus N1 (P = 0.03). In N2 CD34+KDR+ remain elevated in healed versus chronic lesions and, in N1 CD133+31+ were elevated in acute lesions. CGRP was reduced in N2 and N1 versus C (P < 0.04 versus C 26 ± 2 pg/mL). CD34+KDR+ correlated in N2 with oximetry and negatively in N1 with CGRP. Conclusions. CD34+ CPC are reduced in diabetes with advanced complications and diabetic foot. CD34+KDR+ and CD31+133+ EPC differentiation could have a prognostic and therapeutic significance in the healing process of neuropathic and neuroischemic lesions.
    International journal of vascular medicine 01/2014; 2014:589412.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transplantation of culture-expanded adult stem/progenitor cells often results in poor cellular engraftment, survival, and migration into sites of tissue injury. Mesenchymal cells including fibroblasts and stromal cells secrete factors that protect injured tissues, promote tissue repair, and support many types of stem/progenitor cells in culture. We hypothesized that secreted factors in conditioned medium (CdM) from adult bone marrow-derived multipotent stromal cells (MSCs) could be used to prime adult cardiac stem/progenitor cells (CSCs/CPCs) and improve graft success after myocardial infarction (MI). Incubation of adult rat CPCs in CdM from human MSCs isolated by plastic adherence or by magnetic sorting against CD271 (a.k.a., p75 low-affinity nerve growth factor receptor; p75MSCs) induced phosphorylation of STAT3 and Akt in CPCs, supporting their proliferation under normoxic conditions and survival under hypoxic conditions (1% oxygen). Priming CSCs with 30x p75MSC CdM for 30 min prior to transplantation into sub-epicardial tissue 1 day after MI markedly increased engraftment compared with vehicle priming. Screening CdM with neutralizing/blocking antibodies identified Connective Tissue Growth Factor (CTGF) and Insulin as key factors in p75MSC CdM that protected CPCs. Human CTGF peptide (CTGF-D4) and Insulin synergistically promoted CPC survival during hypoxia in culture. Similar to CdM priming, priming of CSCs with CTGF-D4 and Insulin for 30 min prior to transplantation promoted robust engraftment, survival and migration of CSC derivatives at 1 week and 1 month after MI. Our results indicate that short-term priming of human CSCs with CTGF-D4 and Insulin may improve graft success and cardiac regeneration in patients with MI. Stem Cells 2013.
    Stem Cells 09/2013; · 7.70 Impact Factor

Full-text (2 Sources)

View
8 Downloads
Available from
May 22, 2014