Fyn and Src Are Effectors of Oncogenic Epidermal Growth Factor Receptor Signaling in Glioblastoma Patients

Department of Pathology and Laboratory Medicine, University of California-Los Angeles David Geffen School of Medicine, USA.
Cancer Research (Impact Factor: 9.28). 09/2009; 69(17):6889-98. DOI: 10.1158/0008-5472.CAN-09-0347
Source: PubMed

ABSTRACT Activating epidermal growth factor receptor (EGFR) mutations are common in many cancers including glioblastoma. However, clinical responses to EGFR inhibitors are infrequent and short-lived. We show that the Src family kinases (SFK) Fyn and Src are effectors of oncogenic EGFR signaling, enhancing invasion and tumor cell survival in vivo. Expression of a constitutively active EGFR mutant, EGFRvIII, resulted in activating phosphorylation and physical association with Src and Fyn, promoting tumor growth and motility. Gene silencing of Fyn and Src limited EGFR- and EGFRvIII-dependent tumor cell motility. The SFK inhibitor dasatinib inhibited invasion, promoted tumor regression, and induced apoptosis in vivo, significantly prolonging survival of an orthotopic glioblastoma model expressing endogenous EGFRvIII. Dasatinib enhanced the efficacy of an anti-EGFR monoclonal antibody (mAb 806) in vivo, further limiting tumor growth and extending survival. Examination of a large cohort of clinical samples showed frequent coactivation of EGFR and SFKs in glioblastoma patients. These results establish a mechanism linking EGFR signaling with Fyn and Src activation to promote tumor progression and invasion in vivo and provide rationale for combined anti-EGFR and anti-SFK targeted therapies.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Malignant brain tumours are one of the most relevant causes of morbidity and mortality across a wide range of individuals. Malignant glioma is the most common intra axial tumor in the adult. Many researches on this theme brought advances in the knowledge of gliomas biology and pathogenesis and to the development of new agents for targeted molecular therapy. Recent studies focused on either tumor metabolism analysis or epigenetic regulation in the pathogenesis or maintenance of brain tumors. This Review summarizes these developments analyzing molecular pathology and possible further developments for targeted therapies.
    09/2014; 10:29-37.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fyn, a member of the Src family kinases (SFK), is an oncogene in murine epidermis and is associated with cell-cell adhesion turnover and induction of cell migration. Additionally, Fyn upregulation has been reported in multiple tumor types, including cutaneous squamous cell carcinoma (cSCC). Introduction of active H-Ras(G12V) into the HaCaT human keratinocyte cell line resulted in upregulation of Fyn mRNA (200-fold) and protein, while expression of other SFKs remained unaltered. Transduction of active Ras or Fyn was sufficient to induce an epithelial-to-mesenchymal transition in HaCaT cells. Inhibition of Fyn activity, using siRNA or the clinical SFK inhibitor Dasatinib, increased cell-cell adhesion and rapidly (5-60 min) increased levels of cortical F-actin. Fyn inhibition with siRNA or Dasatinib also induced F-actin in MDA-MB-231 breast cancer cells, which have elevated Fyn. F-actin co-localized with adherens junction proteins, and Dasatinib-induced cell-cell adhesion could be blocked by Cytochalasin D, indicating that F-actin polymerization was a key initiator of cell-cell adhesion through the adherens junction. Conversely, inhibiting cell-cell adhesion with low Ca(2+) media did not block Dasatinib-induced F-actin polymerization. Inhibition of the Rho effector kinase ROCK blocked Dasatinib-induced F-actin and cell-cell adhesion, implicating relief of Rho GTPase inhibition as a mechanism of Dasatinib-induced cell-cell adhesion. Finally, topical Dasatinib treatment significantly reduced total tumor burden in the SKH1 mouse model of UV-induced skin carcinogenesis. Together these results identify the promotion of actin-based cell-cell adhesion as a newly described mechanism of action for Dasatinib and suggest that Fyn inhibition may be an effective therapeutic approach in treating cSCC. © 2014 Wiley Periodicals, Inc.
    Molecular Carcinogenesis 06/2014; DOI:10.1002/mc.22190 · 4.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite an increased emphasis on developing new therapies for malignant gliomas, they remain among the most intractable tumors faced today as they demonstrate a remarkable ability to evade current treatment strategies. Numerous candidate treatments fail at late stages, often after showing promising preclinical results. This disconnect highlights the continued need for improved animal models of glioma, which can be used to both screen potential targets and authentically recapitulate the human condition. This review examines recent developments in the animal modeling of glioma, from more established rat models to intriguing new systems using Drosophila and zebrafish that set the stage for higher throughput studies of potentially useful targets. It also addresses the versatility of mouse modeling using newly developed techniques recreating human protocols and sophisticated genetically engineered approaches that aim to characterize the biology of gliomagenesis. The use of these and future models will elucidate both new targets and effective combination therapies that will impact on disease management.
    Advances in Cancer Research 01/2014; 121:261-330. DOI:10.1016/B978-0-12-800249-0.00007-X · 4.26 Impact Factor

Full-text (2 Sources)

Available from
Jul 30, 2014