Article

Fyn and SRC are effectors of oncogenic epidermal growth factor receptor signaling in glioblastoma patients.

Department of Pathology and Laboratory Medicine, University of California-Los Angeles David Geffen School of Medicine, USA.
Cancer Research (Impact Factor: 9.28). 09/2009; 69(17):6889-98. DOI: 10.1158/0008-5472.CAN-09-0347
Source: PubMed

ABSTRACT Activating epidermal growth factor receptor (EGFR) mutations are common in many cancers including glioblastoma. However, clinical responses to EGFR inhibitors are infrequent and short-lived. We show that the Src family kinases (SFK) Fyn and Src are effectors of oncogenic EGFR signaling, enhancing invasion and tumor cell survival in vivo. Expression of a constitutively active EGFR mutant, EGFRvIII, resulted in activating phosphorylation and physical association with Src and Fyn, promoting tumor growth and motility. Gene silencing of Fyn and Src limited EGFR- and EGFRvIII-dependent tumor cell motility. The SFK inhibitor dasatinib inhibited invasion, promoted tumor regression, and induced apoptosis in vivo, significantly prolonging survival of an orthotopic glioblastoma model expressing endogenous EGFRvIII. Dasatinib enhanced the efficacy of an anti-EGFR monoclonal antibody (mAb 806) in vivo, further limiting tumor growth and extending survival. Examination of a large cohort of clinical samples showed frequent coactivation of EGFR and SFKs in glioblastoma patients. These results establish a mechanism linking EGFR signaling with Fyn and Src activation to promote tumor progression and invasion in vivo and provide rationale for combined anti-EGFR and anti-SFK targeted therapies.

0 Bookmarks
 · 
126 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Malignant brain tumours are one of the most relevant causes of morbidity and mortality across a wide range of individuals. Malignant glioma is the most common intra axial tumor in the adult. Many researches on this theme brought advances in the knowledge of gliomas biology and pathogenesis and to the development of new agents for targeted molecular therapy. Recent studies focused on either tumor metabolism analysis or epigenetic regulation in the pathogenesis or maintenance of brain tumors. This Review summarizes these developments analyzing molecular pathology and possible further developments for targeted therapies.
    09/2014; 10:29-37.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite an increased emphasis on developing new therapies for malignant gliomas, they remain among the most intractable tumors faced today as they demonstrate a remarkable ability to evade current treatment strategies. Numerous candidate treatments fail at late stages, often after showing promising preclinical results. This disconnect highlights the continued need for improved animal models of glioma, which can be used to both screen potential targets and authentically recapitulate the human condition. This review examines recent developments in the animal modeling of glioma, from more established rat models to intriguing new systems using Drosophila and zebrafish that set the stage for higher throughput studies of potentially useful targets. It also addresses the versatility of mouse modeling using newly developed techniques recreating human protocols and sophisticated genetically engineered approaches that aim to characterize the biology of gliomagenesis. The use of these and future models will elucidate both new targets and effective combination therapies that will impact on disease management.
    Advances in Cancer Research 01/2014; 121:261-330. · 4.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Src family kinases (SFKs) are highly expressed and active in clinical glioblastoma multiforme (GBM) specimens. SFKs inhibitors have been demonstrated to inhibit prolifer-ation and migration of glioma cells. However, the role of SFKs in glioma stem cells (GSCs), which are important for treatment resistance and recurrence, has not been reported. Here, we examined the expression pattern of individual members of SFKs and their functional role in CD133+ GSCs in comparison to primary glioma cells. We found that Fyn, c-Src and Yes were robustly expressed in GSCs while Lck was absent. Knockdown of c-Src, Yes or treatment with the SFK inhibitor dasatinib inhibited the migration of GSCs, but had no impact on their growth or self-renewal. These results suggest that SFKs represent an effective target for GSC migration but not for their growth.
    International Journal of Oncology 05/2014; · 2.77 Impact Factor

Full-text (2 Sources)

Download
6 Downloads
Available from
Jul 30, 2014