Article

Knocking-down cyclin A(2) by siRNA suppresses apoptosis and switches differentiation pathways in K562 cells upon administration with doxorubicin.

Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin, China.
PLoS ONE (Impact Factor: 3.53). 02/2009; 4(8):e6665. DOI: 10.1371/journal.pone.0006665
Source: PubMed

ABSTRACT Cyclin A(2) is critical for the initiation of DNA replication, transcription and cell cycle regulation. Cumulative evidences indicate that the deregulation of cyclin A(2) is tightly linked to the chromosomal instability, neoplastic transformation and tumor proliferation. Here we report that treatment of chronic myelogenous leukaemia K562 cells with doxorubicin results in an accumulation of cyclin A(2) and follows by induction of apoptotic cell death. To investigate the potential preclinical relevance, K562 cells were transiently transfected with the siRNA targeting cyclin A(2) by functionalized single wall carbon nanotubes. Knocking down the expression of cyclin A(2) in K562 cells suppressed doxorubicin-induced growth arrest and cell apoptosis. Upon administration with doxorubicin, K562 cells with reduced cyclin A(2) showed a significant decrease in erythroid differentiation, and a small fraction of cells were differentiated along megakaryocytic and monocyte-macrophage pathways. The results demonstrate the pro-apoptotic role of cyclin A(2) and suggest that cyclin A(2) is a key regulator of cell differentiation. To the best of our knowledge, this is the first report that knocking down expression of one gene switches differentiation pathways of human myeloid leukemia K562 cells.

0 Bookmarks
 · 
90 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The accumulation of amyloid β-peptide (Aβ) is one of the pathological hallmarks of Alzheimer's disease (AD). Developing Aβ amyloid inhibitors has received much attention. Most reported Aβ inhibitors are small organic molecules or peptides. Here we use a cell-based novel Aβ–enhanced cyan fluorescent protein (ECFP) fluorescent fusion inhibitor screen system, biochemical and biophysical approaches and in vivo studies to identify two zinc-finger-like triple-helical metallo-supramolecular cylinders, [Ni2L3]4+ and [Fe2L3]4+, that can strongly inhibit Alzheimer's disease β-amyloid aggregation. Further studies indicate that the two metallo-supramolecular cylinders are specifically targeting the α/β-discordant stretch and reducing Aβ cytotoxicity. In vivo studies demonstrate that these complexes can ameliorate spatial memory deficits in a transgenic mouse model and decrease the insoluble Aβ level. This is the first demonstration that zinc-finger-like metallo-supramolecular cylinders can be Aβ aggregation inhibitors that specifically target an α/β-discordant stretch. Our work will prompt design and screening of metallo-supramolecular complexes as potential therapeutic agents for AD.
    Chemical Science 10/2012; 3(11):3145-3153. · 8.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The metal complex-based carriers are emerging likely as a new type of gene-delivery systems prone to systematic structural alteration and chemical tailoring. In our work, the DNA affinity of metal complexes with polybenzimidazoles was found to be one of the determinants that can regulate expression of the transgenes. Here, the correlations between the DNA affinity and transfection efficacy were explored by characterizing gene-delivering properties of a series of Co(2+)- and Ca(2+)-polybenzimidazole complexes. The binding equilibrium constants (Kobs) of the divalent metal complexes to DNA, which is considered as a measure of the DNA affinity of metal complexes, were evaluated by isothermal titration calorimetry (ITC) and UV-visible absorption titration. The properties of DNA condensates formed with the metal complexes including sizes, ζ potential and morphology were observed to be altered with Kobs values. The monodispersed spherical condensates were found only for the Ca(2+) complexes whose DNA affinity is weaker than that of the Co(2+) complexes. However, the cell internalization examination indicated that cell uptake of the DNA condensates is independent of homogeneity in their sizes and morphology. The comparison of transgene expression showed that that the Ca(2+) complex-mediated transfection has higher efficiency than the Co(2+) complexes under the conditions tested, and the transfection efficacy cannot be correlated with the cell uptake of DNA condensates. Moreover, the Ca(2+) complexes and their DNA condensates had lower cytotoxicity than the Co(2+) complexes. Thus, the DNA affinity should be one of the factors to be capable of regulating the gene-delivering property of metal complexes.
    Journal of inorganic biochemistry 09/2013; 129C:102-111. · 3.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We characterized a large Amish pedigree and, in 384 pedigree members, analyzed the genetic variance components with covariate screen as well as genome-wide quantitative trait locus (QTL) linkage analysis of red blood cell count (RBC), hemoglobin (HB), hematocrit (HCT), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), red cell distribution width (RDW), platelet count (PLT), and white blood cell count (WBC) using SOLAR. Age and gender were found to be significant covariates in many CBC traits. We obtained significant heritability estimates for RBC, MCV, MCH, MCHC, RDW, PLT, and WBC. We report four candidate loci with LOD scores above 2.0: 6q25 (MCH), 9q33 (WBC), 10p12 (RDW), and 20q13 (MCV). We also report eleven candidate loci with LOD scores between 1.5 and < 2.0. Bivariate linkage analysis of MCV and MCH on chromosome 20 resulted in a higher maximum LOD score of 3.14. Linkage signals on chromosomes 4q28, 6p22, 6q25, and 20q13 are concomitant with previously reported QTL. All other linkage signals reported herein represent novel evidence of candidate QTL. Interestingly rs1800562, the most common causal variant of hereditary hemochromatosis in HFE (6p22) was associated with MCH and MCHC in this family. Linkage studies like the one presented here will allow investigators to focus the search for rare variants amidst the noise encountered in the large amounts of data generated by whole genome sequencing.
    Molecular genetics & genomic medicine. 09/2013; 1(3):131-141.

Full-text (2 Sources)

Download
43 Downloads
Available from
Jun 4, 2014