SET7/9 mediated methylation of non-histone proteins in mammalian cells.

New England Biolabs Inc, Ipswich, MA, USA.
Epigenetics: official journal of the DNA Methylation Society (Impact Factor: 5.11). 09/2009; 4(6):383-7. DOI: 10.4161/epi.4.6.9450
Source: PubMed

ABSTRACT Lysine methylation has emerged as a major posttranslational modification for histones in eukaryotes. Crosstalk between lysine methylation and other posttranslational modifications is crucial for transcriptional gene regulation and epigenetic inheritance. In addition to histones, several other cellular proteins including transcription factors, tumor suppressor and membrane-associated receptors are subject to lysine methylation. SET7/9 plays a prominent role in lysine methylation of histone and non-histone proteins. Recent reports have suggested a new mechanism of epigenetic gene regulation via SET7/9 modulated DNMT1 methylation. In this mechanism, SET7/9 may methylate DNMT1 leading to proteasome mediated protein degradation, and antagonist lysine specific demethylase (LSD), may prevent this degradation by removing the methyl mark. Thus a fine-tuning and balance between cellular SET7/9 and LSD interaction with DNMT1 may be means for epigenetic gene regulation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Mounting evidence suggests that protein methyltransferases (PMTs), which catalyze methylation of histone and non-histone proteins, play a crucial role in diverse biological processes and human diseases. In particular, PMTs have been recognized as major players in regulating gene expression and chromatin state. PMTs are divided into two categories: protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs). There has been a steadily growing interest in these enzymes as potential therapeutic targets and therefore, discovery of PMT inhibitors has also been pursued increasingly over the last decade. Here we present a perspective on selective, small-molecule inhibitors of PMTs with an emphasis on their discovery, characterization, and applicability as chemical tools for deciphering the target PMTs' physiological functions and involvement in human diseases. We highlight the current state of PMT inhibitors and discuss future directions and opportunities for PMT inhibitor discovery.
    Journal of Medicinal Chemistry 11/2014; 58(4). DOI:10.1021/jm501234a · 5.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During the recent years lysine methyltransferase Set7/9 ((Su(var)-3-9, Enhancer-of-Zeste, Trithorax) domain containing protein 7/9) has emerged as an important regulator of different transcription factors. In this study, we report a novel function for Set7/9 as a critical co-activator of E2 promoter-binding factor 1 (E2F1)-dependent transcription in response to DNA damage. By means of various biochemical, cell biology, and bioinformatics approaches, we uncovered that cell-cycle progression through the G1/S checkpoint of tumour cells upon DNA damage is defined by the threshold of expression of both E2F1 and Set7/9. The latter affects the activity of E2F1 by indirectly modulating histone modifications in the promoters of E2F1-dependent genes. Moreover, Set7/9 differentially affects E2F1 transcription targets: it promotes cell proliferation via expression of the CCNE1 gene and represses apoptosis by inhibiting the TP73 gene. Our biochemical screening of the panel of lung tumour cell lines suggests that these two factors are critically important for transcriptional upregulation of the CCNE1 gene product and hence successful progression through cell cycle. These findings identify Set7/9 as a potential biomarker in tumour cells with overexpressed E2F1 activity.Cell Death and Differentiation advance online publication, 15 August 2014; doi:10.1038/cdd.2014.108.
    Cell Death and Differentiation 08/2014; DOI:10.1038/cdd.2014.108 · 8.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis C virus (HCV) infection is a major cause of chronic liver disease, usually resulting in persistent infection involving hepatic steatosis, cirrhosis, and hepatocellular carcinoma via escape of the host's immune response. Set7 is a lysine-specific methyltransferase that is involved in gene regulation and virus replication. However, the mechanism underlying the immune evasion between HCV and Set7 is not well understood. In this study, we observed that the expression of Set7 in Huh7.5.1 cells was upregulated by HCV infection, and high levels of Set7 expression were also found in the sera, PBMCs, and liver tissue of HCV patients relative to healthy individuals. Further investigation showed that Set7 enhanced HCV replication in an enzymatic activity-dependent manner. Moreover, our data showed that Set7 decreased the expression of virus-induced IFN and IFN-related effectors, such as dsRNA-activated protein kinase and 2',5'-oligoadenylate synthetase. Further investigation suggested that Set7 suppressed the endogenous IFN expression by reducing the nuclear translocation of IFN regulatory factor 3/7 and the p65 subunit of NF-κB and reduced IFN-induced dsRNA-activated protein kinase and 2',5'-oligoadenylate synthetase via attenuation of the phosphorylation of STAT1 and STAT2. Additionally, IFN receptors, including IFNAR1 and IFNAR2, which are located upstream of the JAK/STAT pathway, were reduced by Set7. Taken together, our results reveal that Set7 facilitates HCV replication through the attenuation of IFN signaling pathways and IFN-related effectors. Copyright © 2015 by The American Association of Immunologists, Inc.


Available from