Quantitative computed tomography. Eur J Radiol

Department of Radiology, The Royal Infirmary and University, Manchester, UK.
European journal of radiology (Impact Factor: 2.37). 09/2009; 71(3):415-24. DOI: 10.1016/j.ejrad.2009.04.074
Source: PubMed


Quantitative computed tomography (QCT) was introduced in the mid 1970s. The technique is most commonly applied to 2D slices in the lumbar spine to measure trabecular bone mineral density (BMD; mg/cm(3)). Although not as widely utilized as dual-energy X-ray absortiometry (DXA) QCT has some advantages when studying the skeleton (separate measures of cortical and trabecular BMD; measurement of volumetric, as opposed to 'areal' DXA-BMDa, so not size dependent; geometric and structural parameters obtained which contribute to bone strength). A limitation is that the World Health Organisation (WHO) definition of osteoporosis in terms of bone densitometry (T score -2.5 or below using DXA) is not applicable. QCT can be performed on conventional body CT scanners, or at peripheral sites (radius, tibia) using smaller, less expensive dedicated peripheral CT scanners (pQCT). Although the ionising radiation dose of spinal QCT is higher than for DXA, the dose compares favorably with those of other radiographic procedures (spinal radiographs) performed in patients suspected of having osteoporosis. The radiation dose from peripheral QCT scanners is negligible. Technical developments in CT (spiral multi-detector CT; improved spatial resolution) allow rapid acquisition of 3D volume images which enable QCT to be applied to the clinically important site of the proximal femur, more sophisticated analysis of cortical and trabecular bone, the imaging of trabecular structure and the application of finite element analysis (FEA). Such research studies contribute importantly to the understanding of bone growth and development, the effect of disease and treatment on the skeleton and the biomechanics of bone strength and fracture.

33 Reads
  • Source
    • "A sequence of cross-sectional images of tissues are produced in quantitative computed tomography (QCT) based on the amount of X-ray absorbed or attenuated by different tissues through which the X-ray travels [10]. The amount of X-ray absorbed by the tissue at a specific location is expressed as CT number and measured by Hounsfield Unit (HU) in the image. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In the existing finite element head models (FEHMs) that are constructed from medical images, head tissues are usually segmented into a number of components according to the interior anatomical structure of the head. Each component is represented by a homogenous material model. There are a number of disadvantages in the segmentation-based finite element head models. Therefore, we developed a nonsegmentation finite element head model with pointwise-heterogeneous material properties and corroborated it by available experiment data. From the obtained results, it was found that although intracranial pressures predicted by the existing (piecewise-homogeneous) and the proposed (pointwise-heterogeneous) FEHM are very similar to each other, strain/stress levels in the head tissues are very different. The maximum peak strains/stresses predicted by the proposed FEHM are much higher than those by the existing FEHM, indicating that piecewise-homogeneous FEHM may have underestimated the stress/strain level induced by impact and thus may be inaccurate in predicting traumatic brain injuries.
    Applied Bionics and Biomechanics 01/2015; 2015:1-8. DOI:10.1155/2015/837585 · 0.26 Impact Factor
  • Source
    • "Bone strength can be estimated from measurements of bone mineral density (BMD) [8]. Peripheral quantitative computed tomography (pQCT) is a three-dimensional imaging technology that assesses trabecular and cortical bone characteristics, including volumetric BMD (vBMD), at peripheral sites such as the tibia and radius [10]. Peripheral quantitative computed tomography (pQCT) has emerged as an accurate method for measuring BMD and is advantageous as it is less susceptible to confounding by skeletal size compared to dual x-ray absorptiometry (DXA) [11]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Peripheral quantitative computed tomography (pQCT) is an established technology that allows for the measurement of the material properties of bone. Alterations to bone architecture are associated with an increased risk of fracture. Further pQCT research is necessary to identify regions of interest that are prone to fracture risk in people with chronic diseases. The second metatarsal is a common site for the development of insufficiency fractures, and as such the aim of this study was to assess the reproducibility of a novel scanning protocol of the second metatarsal using pQCT. Methods Eleven embalmed cadaveric leg specimens were scanned six times; three times with and without repositioning. Each foot was positioned on a custom-designed acrylic foot plate to permit unimpeded scans of the region of interest. Sixty-six scans were obtained at 15% (distal) and 50% (mid shaft) of the second metatarsal. Voxel size and scan speed were reduced to 0.40 mm and 25 mm.sec-1. The reference line was positioned at the most distal portion of the 2nd metatarsal. Repeated measurements of six key variables related to bone properties were subject to reproducibility testing. Data were log transformed and reproducibility of scans were assessed using intraclass correlation coefficients (ICC) and coefficients of variation (CV%). Results Reproducibility of the measurements without repositioning were estimated as: trabecular area (ICC 0.95; CV% 2.4), trabecular density (ICC 0.98; CV% 3.0), Strength Strain Index (SSI) - distal (ICC 0.99; CV% 5.6), cortical area (ICC 1.0; CV% 1.5), cortical density (ICC 0.99; CV% 0.1), SSI – mid shaft (ICC 1.0; CV% 2.4). Reproducibility of the measurements after repositioning were estimated as: trabecular area (ICC 0.96; CV% 2.4), trabecular density (ICC 0.98; CV% 2.8), SSI - distal (ICC 1.0; CV% 3.5), cortical area (ICC 0.99; CV%2.4), cortical density (ICC 0.98; CV% 0.8), SSI – mid shaft (ICC 0.99; CV% 3.2). Conclusions The scanning protocol generated excellent reproducibility for key bone properties measured at the distal and mid-shaft regions of the 2nd metatarsal. This protocol extends the capabilities of pQCT to evaluate bone quality in people who may be at an increased risk of metatarsal insufficiency fractures.
    BMC Musculoskeletal Disorders 07/2014; 15(1):242. DOI:10.1186/1471-2474-15-242 · 1.72 Impact Factor
  • Source
    • "This study provided evidence that the genetic determinants of cortical and trabecular vBMDs differ. However, QCT has its limitations, including being not applicable to World Health Organization (WHO) definition of osteoporosis that is based on DXA measurement, being more expensive with a higher dosage of exposure to radiation and may not predict fractures better than DXA measurement.[20,21] Nevertheless, its advantages over DXA make QCT a complementary (but not necessarily replacement) approach to bone health assessment.[22] "
    [Show abstract] [Hide abstract]
    ABSTRACT: In the past few years, the bone field has witnessed great advances in genome-wide association studies (GWASs) of osteoporosis, with a number of promising genes identified. In particular, meta-analysis of GWASs, aimed at increasing the power of studies by combining the results from different study populations, have led to the identification of novel associations that would not otherwise have been identified in individual GWASs. Recently, the first whole genome sequencing study for osteoporosis and fractures was published, reporting a novel rare nonsense mutation. This review summarizes the important and representative findings published by December 2013. Comments are made on the notable findings and representative studies for their potential influence and implications on our present understanding of the genetics of osteoporosis. Potential limitations of GWASs and their meta-analyses are evaluated, with an emphasis on understanding the reasons for inconsistent results between different studies and clarification of misinterpretation of GWAS meta-analysis results. Implications and challenges of GWAS are also discussed, including the need for multi- and inter-disciplinary studies.
    05/2014; 21(2):99-116. DOI:10.11005/jbm.2014.21.2.99
Show more

Similar Publications