Article

Dermatologic findings of ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syndrome

Texas Children's Hospital, Department of Pediatric Dermatology, Baylor College of Medicine, 6621 Fannin Street, Houston, TX 77030, USA.
American Journal of Medical Genetics Part A (Impact Factor: 2.05). 09/2009; 149A(9):1900-6. DOI: 10.1002/ajmg.a.32797
Source: PubMed

ABSTRACT Hay-Wells syndrome, caused by mutations in the p63 gene, is an autosomal dominant ectodermal dysplasia with the main features of ankyloblepharon filiforme adnatum, ectodermal defects, and cleft lip/palate, from which the disorder's other name, AEC syndrome, is derived. The National Foundation for Ectodermal Dysplasias convened the International Research Symposium for AEC Syndrome on November 8-10, 2006, at Texas Children's Hospital/Baylor College of Medicine, Houston, TX with appropriate IRB approval. This multidisciplinary conference was the largest gathering of such patients to date and allowed us to further characterize dermatologic features of AEC syndrome, which included: sparse and wiry hair, nail changes, past or present scalp erosions, decreased sweat production, palmar/plantar changes, and unique pigmentary anomalies. Early recognition of the features of AEC syndrome and subsequent early diagnosis is important in minimizing invasive diagnostic studies, improving morbidity and mortality, and providing genetic counseling. Skin erosions, especially those of the scalp, were identified as the most challenging cutaneous aspect of this syndrome. Although the reasons for the skin erosions and poor healing are not known, mutations of p63 may lead to a diminished store of basal cells capable of replenishing the disrupted barrier. Therapeutic strategies currently under exploration include gene therapy, as well as epidermal stem cell therapy. Until then, gentle wound care and limiting further trauma seem to be the most prudent treatment modalities.

0 Followers
 · 
83 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syndrome, which is characterized by cleft palate and severe defects of the skin, is an autosomal dominant disorder caused by mutations in the gene encoding transcription factor p63. Here, we report the generation of a knock-in mouse model for AEC syndrome (p63(+/L514F) ) that recapitulates the human disorder. The AEC mutation exerts a selective dominant-negative function on wild-type p63 by affecting progenitor cell expansion during ectodermal development leading to a defective epidermal stem cell compartment. These phenotypes are associated with impairment of fibroblast growth factor (FGF) signalling resulting from reduced expression of Fgfr2 and Fgfr3, direct p63 target genes. In parallel, a defective stem cell compartment is observed in humans affected by AEC syndrome and in Fgfr2b(-/-) mice. Restoring Fgfr2b expression in p63(+/L514F) epithelial cells by treatment with FGF7 reactivates downstream mitogen-activated protein kinase signalling and cell proliferation. These findings establish a functional link between FGF signalling and p63 in the expansion of epithelial progenitor cells and provide mechanistic insights into the pathogenesis of AEC syndrome.
    EMBO Molecular Medicine 03/2012; 4(3):192-205. DOI:10.1002/emmm.201100199 · 8.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alcohol oxidase (AO) is a peroxisomal enzyme that catalyses the first step in methanol metabolism in yeast. Monomeric, inactive AO protein is synthesised in the cytosol and subsequently imported into peroxisomes, where the enzymatically active, homo-octameric form is found. The mechanisms involved in AO octamer assembly are largely unclear. Here we describe the isolation of Hansenula polymorpha mutants specifically affected in AO assembly. These mutants are unable to grow on methanol and display reduced AO activities. Based on their phenotypes, three major classes of mutants were isolated. Three additional mutants were isolated that each displayed a unique phenotype. Complementation analysis revealed that the isolated AO assembly mutants belonged to 10 complementation groups.
    FEMS Yeast Research 02/2002; 1(4):257-63. DOI:10.1016/S1567-1356(01)00038-1 · 2.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syndrome (Hay-Wells syndrome, MIM #106220) is a rare autosomal dominant ectodermal dysplasia syndrome. It is due to mutations in the TP63 gene, known to be a regulatory gene with many downstream gene targets. TP63 is important in the differentiation and proliferation of the epidermis, as well as many other processes including limb and facial development. It is also known that mutations in TP63 lead to skin erosions. These erosions, especially on the scalp, are defining features of AEC syndrome and cause significant morbidity and mortality in these patients. It was this fact that led to the 2003 AEC Skin Erosion Workshop. That conference laid the groundwork for the International Research Symposium for AEC Syndrome held at Texas Children's Hospital in 2006. The conference brought together the largest cohort of individuals with AEC syndrome, along with a multitude of physicians and scientists. The overarching goals were to define the clinical and pathologic findings for improved diagnostic criteria, to obtain tissue samples for further study and to define future research directions. The symposium was successful in accomplishing these aims as detailed in this conference report. Following our report, we also present 11 manuscripts within this special section that outline the collective clinical, pathologic, and mutational data from 18 individuals enrolled in the concurrent Baylor College of Medicine IRB-approved protocol: Characterization of AEC syndrome. These collaborative findings will hopefully provide a stepping-stone to future translational projects of TP63 and TP63-related syndromes.
    American Journal of Medical Genetics Part A 09/2009; 149A(9):1885-93. DOI:10.1002/ajmg.a.32761 · 2.05 Impact Factor

Preview

Download
1 Download