Article

Adipose Tissue Exosome-Like Vesicles Mediate Activation of Macrophage-Induced Insulin Resistance

Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Diabetes (Impact Factor: 8.47). 09/2009; 58(11):2498-505. DOI: 10.2337/db09-0216
Source: PubMed

ABSTRACT We sought to determine whether exosome-like vesicles (ELVs) released from adipose tissue play a role in activation of macrophages and subsequent development of insulin resistance in a mouse model.
ELVs released from adipose tissue were purified by sucrose gradient centrifugation and labeled with green fluorescent dye and then intravenously injected into B6 ob/ob mice (obese model) or B6 mice fed a high-fat diet. The effects of injected ELVs on the activation of macrophages were determined through analysis of activation markers by fluorescence-activated cell sorter and induction of inflammatory cytokines using an ELISA. Glucose tolerance and insulin tolerance were also evaluated. Similarly, B6 mice with different gene knockouts including TLR2, TLR4, MyD88, and Toll-interleukin-1 receptor (TIR) domain-containing adaptor protein inducing interferon-beta (TRIF) were also used for testing their responses to the injected ELVs.
ELVs are taken up by peripheral blood monocytes, which then differentiate into activated macrophages with increased secretion of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6). Injection of obELVs into wild-type C57BL/6 mice results in the development of insulin resistance. When the obELVs were intravenously injected into TLR4 knockout B6 mice, the levels of glucose intolerance and insulin resistance were much lower. RBP4 is enriched in the obELVs. Bone marrow-derived macrophages preincubated with recombinant RBP4 led to attenuation of obELV-mediated induction of IL-6 and TNF-alpha.
ELVs released by adipose tissue can act as a mode of communication between adipose tissues and macrophages. The obELV-mediated induction of TNF-alpha and IL-6 in macrophages and insulin resistance requires the TLR4/TRIF pathway.

Download full-text

Full-text

Available from: Xiaoying Zhuang, Sep 02, 2015
0 Followers
 · 
249 Views
 · 
59 Downloads
  • Source
    • "Therefore, AT itself could be capable of secreting these markers due to adipocyte hypertrophy, hypoxia and increased influx of pro-inflammatory cells such as macrophages. As AT is capable of secreting functional EVs as shown in mice and humans [48,49], it will be interesting to study whether these AT EVs contain the EV-markers assessed in the present study. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Alterations in extracellular vesicles (EVs), including exosomes and microparticles, contribute to cardiovascular disease. We hypothesized that obesity could favour enhanced release of EVs from adipose tissue, and thereby contribute to cardiovascular risk via obesity-induced metabolic complications. The objectives of this study were: 1) to investigate the relation between the quantity, distribution and (dys) function of adipose tissue and plasma concentrations of atherothrombotic EV-markers; 2) to determine the relation between these EV-markers and the prevalence of the metabolic syndrome; and 3) to assess the contribution of EV markers to the risk of incident type 2 diabetes. In 1012 patients with clinically manifest vascular disease, subcutaneous and visceral fat thickness was measured ultrasonographically. Plasma EVs were isolated and levels of cystatin C, serpin G1, serpin F2 and CD14 were measured, as well as fasting metabolic parameters, hsCRP and adiponectin. The association between adiposity, EV-markers, and metabolic syndrome was tested by multivariable linear and logistic regression analyses. As sex influences body fat distribution, sex-stratified analyses between adipose tissue distribution and EV-markers were performed. The relation between EV-markers and type 2 diabetes was assessed with Cox regression analyses. Higher levels of hsCRP (β 5.59; 95% CI 3.00-8.18) and lower HDL-cholesterol levels (β-11.26; 95% CI -18.39 - -4.13) were related to increased EV-cystatin C levels, and EV-cystatin C levels were associated with a 57% higher odds of having the metabolic syndrome (OR 1.57; 95% CI 1.19-2.27). HDL-cholesterol levels were positively related to EV-CD14 levels (β 5.04; 95% CI 0.07-10.0), and EV-CD14 levels were associated with a relative risk reduction of 16% for development of type 2 diabetes (HR 0.84, 95% CI 0.75-0.94), during a median follow up of 6.5 years in which 42 patients developed type 2 diabetes. In patients with clinically manifest vascular disease, EV-cystatin C levels were positively related, and EV-CD14 levels were negatively related to metabolic complications of obesity.
    Cardiovascular Diabetology 02/2014; 13:37. DOI:10.1186/1475-2840-13-37 · 3.71 Impact Factor
  • Source
    • "It was suggested that they would be involved in the eradication of obsolete proteins (e.g.; reticulocyte exosomes contain transferrin receptor [13]) or could also play a role as modulators of the immune response [14], in the dissemination of viruses and prions, and in mediating communication between tumor cells and their microenvironment [15], [16]. Recent data indicate that exosomes might also convey information and signals between neighboring cells or distant tissues [17], [18], [19], [20] by RNA, protein and lipid transfer [21]. Indeed, the source of exosomes defines their function. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Exosomes are nanometer-sized microvesicles formed in multivesicular bodies (MVBs) during endosome maturation. Exosomes are released from cells into the microenvironment following fusion of MVBs with the plasma membrane. During the last decade, skeletal muscle-secreted proteins have been identified with important roles in intercellular communications. To investigate whether muscle-derived exosomes participate in this molecular dialog, we determined and compared the protein contents of the exosome-like vesicles (ELVs) released from C2C12 murine myoblasts during proliferation (ELV-MB), and after differentiation into myotubes (ELV-MT). Using a proteomic approach combined with electron microscopy, western-blot and bioinformatic analyses, we compared the protein repertoires within ELV-MB and ELV-MT. We found that these vesicles displayed the classical properties of exosomes isolated from other cell types containing components of the ESCRT machinery of the MVBs, as well as numerous tetraspanins. Specific muscle proteins were also identified confirming that ELV composition also reflects their muscle origin. Furthermore quantitative analysis revealed stage-preferred expression of 31 and 78 proteins in ELV-MB and ELV-MT respectively. We found that myotube-secreted ELVs, but not ELV-MB, reduced myoblast proliferation and induced differentiation, through, respectively, the down-regulation of Cyclin D1 and the up-regulation of myogenin. We also present evidence that proteins from ELV-MT can be incorporated into myoblasts by using the GFP protein as cargo within ELV-MT. Taken together, our data provide a useful database of proteins from C2C12-released ELVs throughout myogenesis and reveals the importance of exosome-like vesicles in skeletal muscle biology.
    PLoS ONE 01/2014; 9(1):e84153. DOI:10.1371/journal.pone.0084153 · 3.23 Impact Factor
  • Source
    • "Injection of ELVs of obese mice into lean mice resulted in the development of IR. However, when ELVs were intravenously injected into toll-like-receptor- (Tlr-) 4 knockout mice, glucose intolerance and IR were much lower [23]. Mechanistically, the C-C motif-chemokine-receptor- (CCR-) 2/monocyte-chemotactic-protein- (MCP-) 1 (also CCL2) system regulates monocyte and macrophage recruitment. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity has significant implications for healthcare, since it is a major risk factor for both type 2 diabetes and the metabolic syndrome. This syndrome is a common and complex disorder combining obesity, dyslipidemia, hypertension, and insulin resistance. It is associated with high atherosclerotic cardiovascular risk, which can only partially be explained by its components. Therefore, to explain how obesity contributes to the development of metabolic and cardiovascular disorders, more and better insight is required into the effects of personal and environmental stress on disease processes. In this paper, we show that obesity is a chronic inflammatory disease, which has many molecular mechanisms in common with atherosclerosis. Furthermore, we focus on the role of oxidative stress associated with obesity in the development of the metabolic syndrome. We discuss how several stress conditions are related to inflammation and oxidative stress in association with obesity and its complications. We also emphasize the relation between stress conditions and the deregulation of epigenetic control mechanisms by means of microRNAs and show how this impairment further contributes to the development of obesity, closing the vicious circle. Finally, we discuss the limitations of current anti-inflammation and antioxidant therapy to treat obesity.
    12/2012; 2012:205027. DOI:10.6064/2012/205027
Show more