Article

Noninvasive quantification of 18F-FLT human brain PET for the assessment of tumour proliferation in patients with high-grade glioma.

Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch-Laboratories, Gleueler Str 50, 50931 Cologne, Germany.
European Journal of Nuclear Medicine (Impact Factor: 4.53). 09/2009; 36(12):1960-7. DOI: 10.1007/s00259-009-1244-4
Source: PubMed

ABSTRACT Compartmental modelling of 3′-deoxy-3′-[18F]-fluorothymidine (18F-FLT) PET-derived kinetics provides a method for noninvasive assessment of the proliferation rate of gliomas. Such analyses, however, require an input function generally derived by serial blood sampling and counting. In the current study, 18F-FLT kinetic parameters obtained from image-derived input functions were compared with those from input functions derived from arterialized blood samples.
Based on the analysis of 11 patients with glioma (WHO grade II-IV) a procedure for the automated extraction of an input function from 18F-FLT brain PET data was derived. The time-activity curve of the volume of interest with the maximum difference in 18F-FLT uptake during the first 5 min after injection and the period from 60 to 90 min was corrected for partial-volume effects and in vivo metabolism of 18F-FLT. For each patient a two-compartment kinetic model was applied to the tumour tissue using the image-derived input function. The resulting kinetic rate constants K1 (transport across the blood-brain barrier) and Ki (metabolic rate constant or net influx constant) were compared with those obtained from the same data using the input function derived from blood samples. Additionally, the metabolic rate constant was correlated with the frequency of tumour cells stained with Ki-67, a widely used immunohistochemical marker of cell proliferation.
The rate constants from kinetic modelling were comparable when the blood sample-derived input functions were replaced by the image-derived functions (K1,img and K1,sample, r = 0.95, p < 10(-5); Ki,img and Ki,sample, r = 0.86, p < 0.001). A paired t-test showed no significant differences in the parameters derived with the two methods (K1,img and K1,sample, p = 0.20; Ki,img and Ki,sample, p = 0.92). Furthermore, a significant correlation between Ki,img and the percentage of Ki-67-positive cells was observed (r = 0.73, p = 0.01).
Kinetic modelling of 18F-FLT brain PET data using image-derived input functions extracted from human brain PET data with the practical procedure described here provides information about the proliferative activity of brain tumours which might have clinical relevance especially for monitoring of therapy response in future clinical trials.

0 Bookmarks
 · 
165 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The field of neuro-oncology is concerned with some of the most challenging and difficult to treat conditions in medicine. Despite modern therapies patients diagnosed with primary brain tumours often have a poor prognosis. Imaging can play an important role in evaluating the disease status of such patients. In addition to the structural information derived from MRI and CT scans, positron emission tomography (PET) provides important quantitative metabolic assessment of brain tumours. This review describes the use of PET with radiolabelled glucose and amino acid analogues to aid in the diagnosis of tumours, differentiate between recurrent tumour and radiation necrosis and guide biopsy or treatment. [18F]Fluorodeoxyglucose (FDG) is the tracer that has been used most widely because it has a 2 h half life and can be transported to imaging centres remote from the cyclotron and radiochemistry facilities which synthesise the tracers. The high uptake of FDG in normal grey matter however limits its use in some low grade tumours which may not be visualised. [11C] methionine (MET) is an amino acid tracer with low accumulation in normal brain which can detect low grade gliomas, but its short 20 min half life has limited its use to imaging sites with their own cyclotron. The emergence of new fluorinated amino acid tracers like [18F]Fluoroethyl-l-tyrosine (FET) will likely increase the availability and utility of PET for patients with primary brain tumours. PET can, further, characterise brain tumours by investigating other metabolic processes such as DNA synthesis or thymidine kinase activity, phospholipid membrane biosynthesis, hypoxia, receptor binding and oxygen metabolism and blood flow, which will be important in the future assessment of targeted therapy.
    The surgeon: journal of the Royal Colleges of Surgeons of Edinburgh and Ireland 01/2014; · 1.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We evaluate novel magnetic resonance imaging (MRI) and positron emission tomography (PET) quantitative imaging biomarkers and associated multimodality, serial-time-point analysis methodologies, with the ultimate aim of providing clinically feasible, predictive measures for early assessment of response to cancer therapy. A focus of this work is method development and an investigation of the relationship between the information content of the two modalities. Imaging studies were conducted on subjects who were enrolled in glioblastoma multiforme (GBM) therapeutic clinical trials. Data were acquired, analyzed and displayed using methods that could be adapted for clinical use. Subjects underwent dynamic [(18)F]fluorothymidine (F-18 FLT) PET, sodium ((23)Na) MRI and 3-T structural MRI scans at baseline (before initiation of therapy), at an early time point after beginning therapy and at a late follow-up time point after therapy. Sodium MRI and F-18 FLT PET images were registered to the structural MRI. F-18 FLT PET tracer distribution volumes and sodium MRI concentrations were calculated on a voxel-wise basis to address the heterogeneity of tumor physiology. Changes in, and differences between, these quantities as a function of scan timing were tracked. While both modalities independently show a change in tissue status as a function of scan time point, results illustrate that the two modalities may provide complementary information regarding tumor progression and response. Additionally, tumor status changes were found to vary in different regions of tumor. The degree to which these methods are useful for GBM therapy response assessment and particularly for differentiating true progression from pseudoprogression requires additional patient data and correlation of these imaging biomarker changes with clinical outcome.
    Magnetic Resonance Imaging 07/2012; 30(9):1268-78. · 2.06 Impact Factor
  • Source
    Positron Emission Tomography - Current Clinical and Research Aspects, 02/2012; , ISBN: 978-953-307-824-3

Full-text (2 Sources)

View
21 Downloads
Available from
May 23, 2014