HIV-1 Tat mimetic of VEGF correlates with increased microvessels density in AIDS-related diffuse large B-cell and Burkitt lymphomas

Department of Human Pathology and Oncology, University of Siena, Via Delle Scotte 6, 53100, Siena, Italy.
Journal of Hematopathology 08/2008; 1(1):3-10. DOI: 10.1007/s12308-008-0002-z
Source: PubMed

ABSTRACT Angiogenic switch marks the beginning of tumor's strategy to acquire independent blood supply. In some subtypes of non-Hodgkin's lymphomas, higher local vascular endothelial growth factor (VEGF) expression correlates with increased microvessel density. However, this local VEGF expression is higher only in tumors with elevated expression of the receptors of the growth factor, suggesting an autocrine growth-promoting feedback loop. Several studies have indicated that VEGF receptors are also targeted by Tat protein from the HIV-1-infected cells. Given the similarity of the basic region of Tat to the angiogenic factors (basic fibroblast growth factor, VEGF), Tat mimics these proteins and binds to their receptors. We evaluated the role of HIV-1 Tat in regulating the level of VEGF expression and microvessel density in the AIDS-related diffuse large B-cell (DLBCL) and Burkitt lymphomas (BL). By luciferase assay, we showed that VEGF promoter activity was downregulated in vitro in cells transfected with Tat. Reduced VEGF protein expression in primary HIV-1 positive BL and DLBCL, compared to the negative cases, supported the findings of promoter downregulation from the cell lines. Microvascular density assessed by CD34 expression was, however, higher in HIV-1 positive than in HIV-1 negative tumors. These results suggest that Tat has a wider angiogenic role, besides the regulation of VEGF expression. Thus, targeting Tat protein itself and stabilizing transient silencing of VEGF expression or use of monoclonal antibodies against their receptors in the AIDS-associated tumors will open a window for future explorable pathways in the management of angiogenic phenotypes in the AIDS-associated non-Hodgkin's lymphomas.

Download full-text


Available from: Cristiana Bellan, Jun 20, 2015
  • Source
    Non-Flavivirus Encephalitis, 11/2011; , ISBN: 978-953-307-720-8
  • [Show abstract] [Hide abstract]
    ABSTRACT: Patients infected with HIV have a high prevalence of thiamine deficiency. Genetic studies have provided the opportunity to determine which proteins link thiamine to HIV pathology, i.e., renin-angiotensin system, poly(ADP-ribosyl) polymerase 1, Sp1 promoter gene, transcription factor p53, apoptotic factor caspase 3, and glycogen synthetase kinase 3β. Thiamine also affects HIV through non-genomic factors, i.e., matrix metalloproteinase, vascular endothelial growth factor, heme oxygenase 1, the prostaglandins, cyclooxygenase 2, reactive oxygen species, and nitric oxide. In conclusion, thiamine may benefit HIV patients, but further investigation of the role of thiamine in HIV infection is needed.
    International journal of infectious diseases: IJID: official publication of the International Society for Infectious Diseases 12/2012; 17(4). DOI:10.1016/j.ijid.2012.11.019 · 2.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Migration of HIV infected cells into the CNS is associated with a spectrum of neurological disorders, ranging from milder forms of HIV-associated neurocognitive disorders (HAND) to HIV-associated dementia (HAD). These neuro-psychiatric syndromes are related to the neurodegenerative pathology triggered by the release of HIV proteins and cytokine/chemokines from monocytes/macrophages into the CNS -a condition known as HIV encephalitis (HIVE). As a result of more effective combined anti-retroviral therapy patients with HIV are living longer and thus the frequency of HAND has increased considerably, resulting in an overlap between the neurodegenerative pathology associated with HIV and that related to aging. In fact, HIV infection is believed to hasten the aging process. The mechanisms through which HIV and aging lead to neurodegeneration include: abnormal calcium flux, excitotoxicity, signaling abnormalities, oxidative stress and autophagy defects. Moreover, recent studies have shown that defects in the processing and transport of neurotrophic factors such as fibroblast growth factors (FGFs), neural growth factor (NGF) and brain-derived growth factor (BDNF) might also play a role. Recent evidence implicates alterations in neurotrophins in the pathogenesis of neurodegeneration associated with HAND in the context of aging. Here, we report FGF overexpression curtails gp120-induced neurotoxicity in a double transgenic mouse model. Furthermore, our data show disparities in brain neurotrophic factor levels may be exacerbated in HIV patients over 50 years of age. In this review, we discuss the most recent findings on neurotrophins and HAND in the context of developing new therapies to combat HIV infection in the aging population.
    Journal of Neuroimmune Pharmacology 02/2014; DOI:10.1007/s11481-013-9520-2 · 3.17 Impact Factor