Polyethylene glycol-complexed cationic liposome for enhanced cellular uptake and anticancer activity.

Center for Bioactive Molecular Hybrids and Department of Chemistry, Yonsei University, Seoul, Republic of Korea.
International Journal of Pharmaceutics (Impact Factor: 3.99). 09/2009; 382(1-2):254-61. DOI: 10.1016/j.ijpharm.2009.08.002
Source: PubMed

ABSTRACT Liposomes as one of the efficient drug carriers have some shortcomings such as their relatively short blood circulation time, fast clearance from human body by reticuloendothelial system (RES) and limited intracellular uptake to target cells. In this study, polyethylene glycol (PEG)-complexed cationic liposomes (PCL) were prepared by ionic complex of cationically charged liposomes with carboxylated polyethylene glycol (mPEG-COOH). The cationic liposomes had approximately 98.6+/-1.0 nm of mean particle diameter and 45.5+/-1.1 mV of zeta potential value. While, the PCL had 110.1+/-1.2 nm of mean particle diameter and 18.4+/-0.8 mV of zeta potential value as a result of the ionic complex of mPEG-COOH with cationic liposomes. Loading efficiency of model drug, doxorubicin, into cationic liposomes or PCL was about 96.0+/-0.7%. Results of intracellular uptake evaluated by flow cytometry and fluorescence microscopy studies showed higher intracellular uptake of PCL than that of Doxil. In addition, in vitro cytotoxicity of PCL was comparable to cationic liposomes. In pharmacokinetic study in rats, PCL showed slightly lower plasma level of DOX than that of Doxil. In vivo antitumor activity of DOX-loaded PCL was comparable to that of Doxil against human SKOV-3 ovarian adenocarcinoma xenograft rat model. Consequently, the PCL, of which surface was complexed with PEG by ionic complex may be applicable as drug delivery carriers for increasing therapeutic efficacy of anticancer drugs.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Development of dual functional liposome has been studied for cancer theragnostics. Therefore, we focused on ultrasound-sensitive liposomes with doxorubicin (DOX) and gadolinium (Gd) as a theragnostic carrier having a potential for cancer therapy and diagnosis. In this study, Gd(III)-DOTA-modified sonosensitive liposomes (GL) was developed using chemically synthesized Gd(III)-DOTA-DPPE lipid. Sonosensitivity of GL to 1 MHz ultrasound induced 25% of DOX release. The relaxivities () of GL were , which was higher than that of MR-bester. Intracellular delivery of DOX from GL by ultrasound irradiation was evaluated according to ultrasound intensity, resulting in increase of uptake of DOX released from ultrasound-triggered GLs compared to GL3 or Doxil without ultrasound. Taken together, this study shows that the paramagnetic and sonosensitive liposomes, GL, is a novel and highly effective delivery system for drug with the potential for broad applications in human disease.
    Bulletin- Korean Chemical Society 01/2013; 34(1). · 0.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DMPC and DSPC liposomes were prepared via thin film hydration method followed by sonication. Propranolol solution was incorporated into liposomes at hydration stage. TEM images showed the sizes of DSPC and DMPC were around 88 and 137 nm, respectively. The highest encapsulation ratio of propranolol was approximately 70% using DSPC/CHO/OCT liposomes, which release the drug over 60% in 24 h and reached 100% in 48 h. Both propranolol (10-8-10-6 M) and DSCP liposomes-encapsulated propranolol showed over 1.5-fold increases in the proliferation of human osteoblastic cells hFOB1.19 while differentiation of the cells was approximately doubled by plain and liposomal propranolol, indicating that the stimulatory effects of liposomal propranolol are similar with those of propranolol on human osteoblastic hFOB1.19 cells. The phosphatidylcholine liposomes-encapsulated propranolol prepared in this study potentially possesses anabolic effects in vivo and is also a promising anti-osteoporotic agent in future.
    Bio-medical materials and engineering 01/2014; 24(5):1875-87. · 0.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As a glycosphingolipid that can bind to several extracellular matrix proteins, sulfatide has the potential to become an effective targeting agent for tumors overexpressing tenasin-C in their microenvironment. To overcome the dose-limiting toxicity of doxorubicin (DOX), a sulfatide-containing nanoliposome (SCN) encapsulation approach was employed to improve treatment efficacy and reduce side effects of free DOX. This study analysed in vitro characteristics of sulfatide-containing nanoliposomal DOX (SCN-DOX) and assessed its cytotoxicity in vitro, as well as biodistribution, therapeutic efficacy, and systemic toxicity in a human glioblastoma U-118MG xenograft model. SCN-DOX was shown to achieve highest drug to lipid ratio (0.5∶1) and a remarkable in vitro stability. Moreover, DOX encapsulated in SCN was shown to be delivered into the nuclei and displayed prolonged retention over free DOX in U-118MG cells. This simple two-lipid SCN-DOX nanodrug has favourable pharmacokinetic attributes in terms of prolonged circulation time, reduced volume of distribution and enhanced bioavailability in healthy rats. As a result of the improved biodistribution, an enhanced treatment efficacy of SCN-DOX was found in glioma-bearing mice compared to the free drug. Finally, a reduction in the accumulation of DOX in the drug's principal toxicity organs achieved by SCN-DOX led to the diminished systemic toxicity as evident from the plasma biochemical analyses. Thus, SCN has the potential to be an effective and safer nano-carrier for targeted delivery of therapeutic agents to tumors with elevated expression of tenascin-C in their microenvironment.
    PLoS ONE 09/2014; 9(7):e103736. · 3.53 Impact Factor