Mesenchymal stem cells and inorganic bovine bone mineral in sinus augmentation: comparison with augmentation by autologous bone in adult sheep

Universitätsklinik für Zahn-, Mund- und Kieferheilkunde, Abteilung Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie, Hugstetter Str. 55, D-79106 Freiburg, Germany.
British Journal of Oral and Maxillofacial Surgery (Impact Factor: 1.13). 09/2009; 48(4):285-90. DOI: 10.1016/j.bjoms.2009.06.226
Source: PubMed

ABSTRACT Our aim was to compare the osteogenic potential of mononuclear cells harvested from the iliac crest combined with bovine bone mineral (BBM) (experimental group) with that of autogenous cancellous bone alone (control group). We studied bilateral augmentations of the sinus floor in 6 adult sheep. BBM and mononuclear cells (MNC) were mixed and placed into one side and autogenous bone in the other side. Animals were killed after 8 and 16 weeks. Sites of augmentation were analysed radiographically and histologically. The mean (SD) augmentation volume was 3.0 (1.0) cm(3) and 2.7 (0.3) cm(3) after 8 and 16 weeks in the test group, and 2.8 (0.3) cm(3) (8 weeks) and 2.8 (1.2) cm(3) (16 weeks) in the control group, respectively. After 8 weeks, histomorphometric analysis showed 24 (3)% BBM, and 19 (11)% of newly formed bone in the test group. The control group had 20 (13%) of newly formed bone. Specimens after 16 weeks showed 29 (12%) of newly formed bone and 19 (3%) BBM in the test group. The amount of newly formed bone in the control group was 16 (6%). The results show that mononuclear cells, including mesenchymal stem cells, in combination with BBM as the biomaterial, have the potential to form bone.

Download full-text


Available from: Michele Maglione, Dec 15, 2013
  • Source
    • "Split mouth study in 18 adult japanese rabbits Gutwald et al. (32) 2010 MSC: 19% (8 weeks), 29% (16 weeks) particulated autograft: 20% (8 weeks), 16% (16 weeks) MSC combined with bovine bone mineral have the potential to form bone Case series human study Shayesteh et al. (33) 2008 41% of regenerated bone (3 months) Less than 3 mm of residual bone. 6 patients. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this work was to review de literature about the role of mesenchymal stem cells in bone regenerative procedures in oral implantology, specifically, in the time require to promote bone regeneration. A bibliographic search was carried out in PUBMED with a combination of different key words. Animal and human studies that assessed histomorphometrically the influence of mesenchymal stem cells on bone regeneration procedures in oral implantology surgeries were examined. Reults: - Alveolar regeneration: Different controlled histomorphometric animal studies showed that bone regeneration is faster using stem cells seeded in scaffolds than using scaffolds or platelet rich plasma alone. Human studies revealed that stem cells increase bone regeneration. - Maxillary sinus lift: Controlled studies in animals and in humans showed higher bone regeneration applying stem cells compared with controls. - Periimplantary bone regeneration and alveolar distraction: Studies in animals showed higher regeneration when stem cells are used. In humans, no evidence of applying mesenchymal stem cells in these regeneration procedures was found. Stem cells may promote bone regeneration and be useful in bone regenerative procedures in oral implantology, but no firm conclusions can be drawn from the rather limited clinical studies so far performed. Key words:Mesenchymal stem cells, bone regeneration, dental implants, oral surgery, tissue engineering.
    02/2014; 6(1):e60-e65. DOI:10.4317/jced.51186
  • Source
    • "The addition of platelet-rich plasma which contains various growth factors on DBB did not enhance early and late healing of the bone [13]. The local delivery of mesenchymal stem cells (MSC) by DBB offers the promising potential of augmenting the healing of CSBD [14] [15], but it needs harvesting a cell from a secondary site, which is then expanded in vitro Bone 56 (2013) 110–118 ⁎ Corresponding author. Fax: +31 20 598 0333. "
    [Show abstract] [Hide abstract]
    ABSTRACT: As an alternative to an autologous bone graft, deproteinized bovine bone (DBB) is widely used in the clinical dentistry. Although DBB provides an osteoconductive scaffold, it is not capable of enhancing bone regeneration because it is not osteoinductive. In order to render DBB osteoinductive, bone morphogenetic protein 2 (BMP-2) has previously been incorporated into a three dimensional reservoir (a biomimetic calcium phosphate coating) on DBB, which effectively promoted the osteogenic response by the slow delivery of BMP-2. The aim of this study was to investigate the therapeutic effectiveness of such coating on the DBB granules in repairing a large cylindrical bone defect (8mm diameter, 13mm depth) in sheep. Eight groups were randomly assigned to the bone defects: (i) no graft material; (ii) autologous bone; (iii) DBB only; (iv) DBB mixed with autologous bone; (v) DBB bearing adsorbed BMP-2; (vi) DBB bearing a coating but no BMP-2; (vii) DBB bearing a coating with adsorbed BMP-2; and (viii) DBB bearing a coating-incorporated depot of BMP-2. 4 and 8 weeks after implantation, samples were withdrawn for a histological and a histomorphometric analysis. Histological results confirmed the excellent biocompatibility and osteoconductivity of all the grafts tested. At 4 weeks, DBB mixed with autologous bone or functionalized with coating-incorporated BMP-2 showed more newly-formed bone than the other groups with DBB. At 8 weeks, the volume of newly-formed bone around DBB that bore a coating-incorporated depot of BMP-2 was greatest among the groups with DBB, and was comparable to the autologous bone group. The use of autologous bone and BMP-2 resulted in more bone marrow formation. Multinucleated giant cells were observed in the resorption process around DBB, whereas histomorphometric analysis revealed no significant degradation of DBB. In conclusion, it was shown that incorporating BMP-2 into the calcium phosphate coating of DBB induced strong bone formation around DBB for repairing a critical-sized bone defect.
    Bone 05/2013; 56(1). DOI:10.1016/j.bone.2013.05.017 · 4.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this work was to evaluate the potential of substituting autogenous bone (AB) by bone marrow aspirate concentrate (BMAC). Both AB and BMAC were tested in combination with a bovine bone mineral (BBM) for their ability of new bone formation (NBF) in a multicentric, randomized, controlled, clinical and histological noninferiority trial. Forty-five severely atrophied maxillary sinus from 26 patients were evaluated in a partial cross-over design. As test arm, 34 sinus of 25 patients were augmented with BBM and BMAC containing mesenchymal stem cells. Eleven control sinus from 11 patients were augmented with a mixture of 70% BBM and 30% AB. Biopsies were obtained after a 3-4-month healing period at time of implant placement and histomorphometrically analyzed for NBF. NBF was 14.3%±1.8% for the control and nonsignificantly lower (12.6%±1.7%) for the test (90% confidence interval: -4.6 to 1.2). Values for BBM (31.3%±2.7%) were significantly higher for the test compared with control (19.3%±2.5%) (p<0.0001). Nonmineralized tissue was lower by 3.3% in the test compared with control (57.6%; p=0.137). NBF after 3-4 months is equivalent in sinus, augmented with BMAC and BBM or a mixture of AB and BBM. This technique could be an alternative for using autografts to stimulate bone formation.
    Tissue Engineering Part A 04/2011; 17(17-18):2187-97. DOI:10.1089/ten.TEA.2010.0516 · 4.64 Impact Factor
Show more