Cyanobacterial contribution to the genomes of the plastid-lacking protists.

Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan.
BMC Evolutionary Biology (Impact Factor: 3.41). 09/2009; 9:197. DOI: 10.1186/1471-2148-9-197
Source: PubMed

ABSTRACT Eukaryotic genes with cyanobacterial ancestry in plastid-lacking protists have been regarded as important evolutionary markers implicating the presence of plastids in the early evolution of eukaryotes. Although recent genomic surveys demonstrated the presence of cyanobacterial and algal ancestry genes in the genomes of plastid-lacking protists, comparative analyses on the origin and distribution of those genes are still limited.
We identified 12 gene families with cyanobacterial ancestry in the genomes of a taxonomically wide range of plastid-lacking eukaryotes (Phytophthora [Chromalveolata], Naegleria [Excavata], Dictyostelium [Amoebozoa], Saccharomyces and Monosiga [Opisthokonta]) using a novel phylogenetic pipeline. The eukaryotic gene clades with cyanobacterial ancestry were mostly composed of genes from bikonts (Archaeplastida, Chromalveolata, Rhizaria and Excavata). We failed to find genes with cyanobacterial ancestry in Saccharomyces and Dictyostelium, except for a photorespiratory enzyme conserved among fungi. Meanwhile, we found several Monosiga genes with cyanobacterial ancestry, which were unrelated to other Opisthokonta genes.
Our data demonstrate that a considerable number of genes with cyanobacterial ancestry have contributed to the genome composition of the plastid-lacking protists, especially bikonts. The origins of those genes might be due to lateral gene transfer events, or an ancient primary or secondary endosymbiosis before the diversification of bikonts. Our data also show that all genes identified in this study constitute multi-gene families with punctate distribution among eukaryotes, suggesting that the transferred genes could have survived through rounds of gene family expansion and differential reduction.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Horizontal gene transfer (HGT) may not only create genome mosaicism, but also introduce evolutionary novelties to recipient organisms. HGT in plastid genomes, though relatively rare, still exists. HGT‐derived genes are particularly common in unicellular photosynthetic eukaryotes and they also occur in multicellular plants. In particular, ancient HGT events occurring during the early evolution of primary photosynthetic eukaryotes were probably frequent. There is clear evidence that anciently acquired genes played an important role in the establishment of primary plastids and in the transition of plants from aquatic to terrestrial environments. Although algal genes have often been used to infer historical plastids in plastid‐lacking eukaryotes, reliable approaches are needed to distinguish endosymbionts‐derived genes from those independently acquired from preferential feeding or other activities.
    Journal of Systematics and Evolution 01/2013; 51(1). · 1.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytokinins (CKs) are evolutionally old and highly conserved low-mass molecules that have been identified in almost all known organisms. In plants, they evolved into an important group of plant hormones controlling many physiological and developmental processes throughout the whole lifespan of the plant. CKs and their functions are, however, not unique to plants. In this review, the strategies and mechanisms of plants – and phylogenetically distinct plant-interacting organisms such as bacteria, fungi, nematodes and insects employing CKs or regulation of CK status in plants – are described and put into their evolutionary context. The major breakthroughs made in the last decade in the fields of CK biosynthesis, degradation and signalling are also summarised.
    Functional Plant Biology 05/2012; 39(4):267-284. · 2.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The idea that evolutionary models should minimize plastid endosymbioses has dominated thinking about the history of eukaryotic photosynthesis. Although a reasonable starting point, this framework has not gained support from observed patterns of algal and plant evolution, and can be an obstacle to fully understanding the modern distribution of plastids. Empirical data indicate that plastid losses are extremely uncommon, that major changes in plastid biochemistry/architecture are evidence of an endosymbiotic event, and that comparable selection pressures can lead to remarkable convergences in algae with different endosymbiotic origins. Such empirically based generalizations can provide a more realistic philosophical framework for interpreting complex and often contradictory results from phylogenomic investigations of algal evolution. This article is protected by copyright. All rights reserved.
    Journal of Phycology 02/2014; · 2.53 Impact Factor


Available from