Toward an AIDS vaccine: lessons from natural simian immunodeficiency virus infections of African nonhuman primate hosts.

Seattle Biomedical Research Institute, Seattle, Washington, USA.
Nature medicine (Impact Factor: 28.05). 09/2009; 15(8):861-5. DOI: 10.1038/nm.2013
Source: PubMed

ABSTRACT The design of an effective AIDS vaccine has eluded the efforts of the scientific community to the point that alternative approaches to classic vaccine formulations have to be considered. We propose here that HIV vaccine research could greatly benefit from the study of natural simian immunodeficiency virus (SIV) infections of African nonhuman primates. Natural SIV hosts (for example, sooty mangabeys, African green monkeys and mandrills) share many features of HIV infection of humans; however, they usually do not develop immunodeficiency. These natural, nonprogressive SIV infections represent an evolutionary adaptation that allows a peaceful coexistence of primate lentiviruses and the host immune system. This adaptation does not result in reduced viral replication but, rather, involves phenotypic changes to CD4(+) T cell subsets, limited immune activation and preserved mucosal immunity, all of which contribute to the avoidance of disease progression and, possibly, to the reduction of vertical SIV transmission. Here we summarize the current understanding of SIV infection of African nonhuman primates and discuss how unraveling these evolutionary adaptations may provide clues for new vaccine designs that might induce effective immune responses without the harmful consequences of excessive immune activation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The role of the accessory viral Nef protein as a multi-functional manipulator of the host cell that is required for effective replication of HIV and SIV in vivo is well established. It is unknown, however, whether Nef manipulates all or just specific subsets of CD4+ T cells that are the main targets of virus infection and differ substantially in their state of activation and importance for a functional immune system. Here, we analyzed the effect of Nef proteins differing in their TCR-CD3 downmodulation function in HIV infected human lymphoid aggregate cultures and peripheral blood mononuclear cells. We found that Nef efficiently downmodulates TCR-CD3 in naïve and memory CD4+ T cells and protects the latter against apoptosis. In contrast, highly proliferative CD45RA+CD45RO+CD4+ T cells were main producers of infectious virus but largely refractory to TCR-CD3 downmodulation. Such T cell subset-specific differences were also observed for Nef-mediated modulation of CD4 but not for enhancement of virion infectivity. Our results indicate that Nef predominantly modulates surface receptors on CD4+ T cell subsets that are not already fully permissive for viral replication. As a consequence, Nef-mediated downmodulation of TCR-CD3 that distinguishes most primate lentiviruses from HIV-1 and its vpu containing simian precursors may promote a selective preservation of central memory CD4+ T cells that are critical for the maintenance of a functional immune system. The Nef proteins of human and simian immunodeficiency viruses manipulate infected CD4+ T cells in multiple ways to promote viral replication and immune evasion in vivo. Here, we show that some effects of Nef are subset-specific. Downmodulation of CD4 and TCR-CD3 is highly effective in central memory CD4+ T cells and the latter Nef function protects this T cell subset against apoptosis. In contrast, highly activated/proliferating CD4+ T cells are largely refractory to receptor downmodulation but main producers of infectious HIV-1. Nef-mediated enhancement of virion infectivity, however, was observed in all T cell subsets examined. Our results provide new insights into how primate lentiviruses manipulate their target cells and suggest that the TCR-CD3 downmodulation function of Nef may promote a selective preservation of memory CD4+ T cells that are critical for immune function but has little effect on activated/proliferating CD4+T cells that are main targets for viral replication. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
    Journal of Virology 12/2014; · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: HIV research has made rapid progress and led to remarkable achievements in recent decades, the most important of which are combination antiretroviral therapies (cART). However, in the absence of a vaccine, the pandemic continues, and additional strategies are needed. The 'towards an HIV cure' initiative aims to eradicate HIV or at least bring about a lasting remission of infection during which the host can control viral replication in the absence of cART. Cases of spontaneous and treatment-induced control of infection offer substantial hope. Here, we describe the scientific knowledge that is lacking, and the priorities that have been established for research into a cure. We discuss in detail the immunological lessons that can be learned by studying natural human and animal models of protection and spontaneous control of viraemia or of disease progression. In particular, we describe the insights we have gained into the immune mechanisms of virus control, the impact of early virus-host interactions and why chronic inflammation, a hallmark of HIV infection, is an obstacle to a cure. Finally, we enumerate current interventions aimed towards improving the host immune response.
    Philosophical Transactions of The Royal Society B Biological Sciences 01/2014; 369(1645):20130436. · 6.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic immune activation (IA) is considered as the driving force of CD4+ T cell depletion and AIDS. Fundamental clues in the mechanisms that regulate IA could lie in natural hosts of SIV, such as African green monkeys (AGMs). Here we investigated the role of innate immune cells and IFN-α in the control of IA in AGMs. AGMs displayed significant NK cell activation upon SIVagm infection, which was correlated with the levels of IFN-α. Moreover, we detected cytotoxic NK cells in lymph nodes during the early acute phase of SIVagm infection. Both plasmacytoid and myeloid dendritic cell (pDC and mDC) homing receptors were increased, but the maturation of mDCs, in particular of CD16+ mDCs, was more important than that of pDCs. Monitoring of 15 cytokines showed that those, which are known to be increased early in HIV-1/SIVmac pathogenic infections, such as IL-15, IFN-α, MCP-1 and CXCL10/IP-10, were significantly increased in AGMs as well. In contrast, cytokines generally induced in the later stage of acute pathogenic infection, such as IL-6, IL-18 and TNF-α, were less or not increased, suggesting an early control of IA. We then treated AGMs daily with high doses of IFN-α from day 9 to 24 post-infection. No impact was observed on the activation or maturation profiles of mDCs, pDCs and NK cells. There was also no major difference in T cell activation or interferon-stimulated gene (ISG) expression profiles and no sign of disease progression. Thus, even after administration of high levels of IFN-α during acute infection, AGMs were still able to control IA, showing that IA control is independent of IFN-α levels. This suggests that the sustained ISG expression and IA in HIV/SIVmac infections involves non-IFN-α products.
    PLoS Pathogens 07/2014; 10(7):e1004241. · 8.06 Impact Factor

Full-text (2 Sources)

Available from
May 16, 2014