Cancer immunotherapy: co-stimulatory agonists and co-inhibitory antagonists.

Department of Haematology, UCL Cancer Institute, Paul O'Gorman Building, University College London, London, UK.
Clinical & Experimental Immunology (Impact Factor: 3.28). 08/2009; 157(1):9-19. DOI: 10.1111/j.1365-2249.2009.03912.x
Source: PubMed

ABSTRACT The generation and maintenance of immune responses are controlled by both co-stimulatory and co-inhibitory signalling through T cell co-receptors, many of which belong to the immunoglobulin-like superfamily or the tumour necrosis factor receptor superfamily. Agonistic or antagonistic monoclonal antibodies targeting these co-receptors have the potential to enhance immunity. Furthermore, their activity on the immunosuppressive regulatory T cell populations which are prevalent within many tumours provides an additional rationale for their use as anti-cancer therapies. This review summarizes the interactions between cancer and the immune system, highlighting the ways in which these new classes of immunostimulatory antibodies might enhance anti-tumour immunity and summarizing early clinical experience with their use.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Immunotherapy has become a crucial modality for non-small-cell lung cancer treatment. Recently, two immune checkpoints, PD-1 and PD-L1, have emerged as important targets for immunotherapy. Their antitumor efficacy has been confirmed by in vitro and in vivo studies. But the correlation between PD-1/PD-L1 expression and EGFR expression was controversial and needs more evidences to support the combination of PD-1/PD-L1 inhibitors and tyrosine kinase inhibitors.
    Journal of translational medicine. 01/2015; 13(1):5.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: T helper (Th)-17 subsets hold promise in adoptive T cell transfer therapy for cancer. However, ex vivo programming of Th17 cells in presence of TGF-β increases cell surface expression of ectonucleotidases CD39 and CD73, that in turn increases susceptibility to immunosuppression and reduces effector functions. Our data shows that ATP mediated suppression of IFN-γ production by Th17 cells can be overcome either by genetic ablation of CD73 or by generating TGF-β independent Th17 in presence of IL-1β. Th17 cells cultured in IL-1β are also highly polyfunctional, express high level of effector molecules and exhibit better short-term control of B16-F10 murine melanoma, despite reduced stem cell like properties. Adding TGF-β at low dose that does not up regulate CD73 expression, but induces stemness, drastically improves anti-tumor function of IL-1β cultured Th17 cells. It is likely that effector property of IL-1β dependent Th17 is due to their high glycolytic capacity, since generating IL-1β dependent Th17 cells in pyruvate containing media impaired glycolysis and its anti-tumor potential. Thus, our data suggests that due to induction of ectonucleotidase expression by TGF-β, ex vivo culture conditions for generating Th17 cells need to be reconsidered for exploiting their full potential in adoptive T cell therapy.
    Cancer Research 09/2014; · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The immune system has the ability to recognize and specifically reject tumors, and tumors only become clinically apparent once they have evaded immune destruction by creating an immunosuppressive tumor microenvironment. Radiotherapy (RT) can cause immunogenic tumor cell death resulting in cross-priming of tumor-specific T-cells, acting as an in situ tumor vaccine; however, RT alone rarely induces effective anti-tumor immunity resulting in systemic tumor rejection. Immunotherapy can complement RT to help overcome tumor-induced immune suppression, as demonstrated in pre-clinical tumor models. Here, we provide the rationale for combinations of different immunotherapies and RT, and review the pre-clinical and emerging clinical evidence for these combinations in the treatment of cancer.
    Frontiers in Oncology 11/2014; 4:325.

Full-text (2 Sources)

Available from
May 23, 2014