Laser beam self-focusing in the atmosphere.

Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
Physical Review Letters (Impact Factor: 7.73). 07/2009; 102(23):233902. DOI: 10.1103/PhysRevLett.102.233902
Source: PubMed

ABSTRACT We propose to exploit a self-focusing effect in the atmosphere to assist delivering powerful laser beams from orbit to the ground. We demonstrate through numerical modeling that when the self-focusing length is comparable with the atmosphere height the spot size on the ground can be reduced well below the diffraction limits without beam quality degradation. The density variation suppresses beam filamentation and provides the self-focusing of the beam as a whole. The use of light self-focusing in the atmosphere can greatly relax the requirements for the orbital optics and ground receivers.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The modulation instability (MI) in optical fiber amplifiers and lasers with anomalous dispersion leads to CW beam breakup and the growth of multiple pulses. This can be both a detrimental effect, limiting the performance of amplifiers, and also an underlying physical mechanism in the operation of MI-based devices. Here we revisit the analytical theory of MI in fiber optical amplifiers. The results of the exact theory are compared with the previously used adiabatic approximation model, and the range of applicability of the latter is determined. The same technique is applicable to the study of spatial MI in solid state laser amplifiers and MI in non-uniform media.
    Proceedings of SPIE - The International Society for Optical Engineering 02/2011; · 0.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we firstly preliminary analyzed how to control the collapse position of beam when intensity and beam waist have been varied by the laser self-focusing in nonlinear media and lens-focusing. We obtain the relations of the focusing position with input power and focal length of lens. The length of focusing is inversely proportional to the input power and directly proportional to focal length of lens. Secondly, Based on the nonlinear propagation equation and split-step Fourier method, we investigate how to control the focal distance and beam quality of high-power laser at focusing spot in nonlinear media. We can control the focusing spot at any position by changed power and lens. The numerical simulations is good consistent with theoretical analysis.
    Proceedings of SPIE - The International Society for Optical Engineering 11/2010; · 0.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thermal blooming of a laser beam propagating in a gas-filled tube is investigated both analytically and experimentally. A self-consistent formulation taking into account heating of the gas and the resultant laser beam spreading (including diffraction) is presented. The heat equation is used to determine the temperature variation while the paraxial wave equation is solved in the eikonal approximation to determine the temporal and spatial variation of the Gaussian laser spot radius, Gouy phase (longitudinal phase delay), and wavefront curvature. The analysis is benchmarked against a thermal blooming experiment in the literature using a CO2 laser beam propagating in a tube filled with air and propane. New experimental results are presented in which a CW fiber laser (1 μm) propagates in a tube filled with nitrogen and water vapor. By matching laboratory and theoretical results, the absorption coefficient of water vapor is found to agree with calculations using MODTRAN (the MODerate-resolution atmospheric TRANsmission molecular absorption database) and HITRAN (the HIgh-resolution atmospheric TRANsmission molecular absorption database).
    Applied Optics 08/2014; 53(22). · 1.69 Impact Factor