Phylogeny and primary structure analysis of fiber shafts of all human adenovirus types for rational design of adenoviral gene-therapy vectors

Institut für Virologie, Medizinische Hochschule Hannover, D-30625 Hannover, Germany.
Journal of General Virology (Impact Factor: 3.53). 09/2009; 90(Pt 12):2849-54. DOI: 10.1099/vir.0.014514-0
Source: PubMed

ABSTRACT The fiber shaft of human adenoviruses (HAdVs) is essential for bringing the penton base into proximity to the secondary cellular receptor. Fiber shaft sequences of all 53 HAdV types were studied. Phylogeny of the fiber shaft revealed clustering corresponding to the HAdV species concept. An intraspecies recombination hot spot was found at the shaft/knob boundary, a highly conserved sequence stretch. For example, HAdV-D20 clustered with HAdV-D23 in the fiber shaft, but with HAdV-D47 in the fiber knob. Although all shafts exhibited the typical pseudorepeats, amino acid sequence identity was found to be as high as 92 % (interspecies) and 54 % (intraspecies). In contrast to a previous study, a flexibility motif (KXGGLXFD/N) was found in eight HAdV-D types, whereas the putative heparan sulfate-binding site (KKTK) was only found in species HAdV-C. Our results suggest that pseudotyping of gene-therapy vectors at the shaft/knob boundary is feasible, but that flexibility data of shafts should be considered.


Available from: Sebastian Darr, Apr 16, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Due to the highly complex nature of the extracellular matrix (ECM), the design and implementation of dynamic, stimuli-responsive surfaces that present well-defined ligands and serve as model ECM substrates have been of tremendous interest to biomaterials, biosensor, and cell biology communities. Such tools provide strategies for identifying specific ligand-receptor interactions that induce vital biological consequences. Herein, we report a novel dual-ligand-presenting surface methodology that modulates dynamic ECM properties to investigate various cell behaviors. Peptides PHSRN, cRGD, and KKKTTK, which mimic the cell- and heparan sulfate-binding domains of fibronectin, and carbohydrates Gal and Man were combined with cell adhesive RGD to survey possible synergistic or antagonist ligand effects on cell adhesion, spreading, growth, and migration. Soluble molecule and enzymatic inhibition assays were also performed, and the levels of focal adhesion kinase in cells subjected to different ligand combinations were quantified. A redox-responsive trigger was incorporated into this surface strategy to spontaneously release ligands in the presence of adhered cells, and cell spreading, growth, and migration responses were measured and compared. The identity and nature of the dual-ligand combination directly influenced cell behavior.
    Langmuir 11/2014; DOI:10.1021/la503521x · 4.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Computational analysis of human adenovirus type 4 (HAdV-E4), a pathogen that is the only HAdV member of species E, provides insights into its zoonotic origin and molecular adaptation. Its genome encodes a domain of the major capsid protein, hexon, from HAdV-B16 recombined into the genome chassis of a simian adenovirus. Genomes of two recent field strains provide a clue to its adaptation to the new host: recombination of a NF-I binding site motif, which is required for efficient viral replication, from another HAdV genome. This motif is absent in the chimpanzee adenoviruses and the HAdV-E4 prototype, but is conserved amongst other HAdVs. This is the first report of an interspecies recombination event for HAdVs, and the first documentation of a lateral partial gene transfer from a chimpanzee AdV. The potential for such recombination events are important when considering chimpanzee adenoviruses as candidate gene delivery vectors for human patients.
    Virology 06/2013; DOI:10.1016/j.virol.2013.05.014 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Emergent human and simian adenoviruses (HAdVs) may arise from genome recombination. Computational analysis of SAdV type 35 reveals a genome comprising a chassis with elements mostly from two simian adenoviruses, SAdV-B21 and -B27, and regions of high sequence similarity shared with HAdV-B21 and HAdV-B16. Although recombination direction cannot be determined, the presence of these regions suggests prior infections of humans by an ancestor of SAdV-B35, and/or vice versa. Absence of this virus in humans may reflect non-optimal conditions for zoonosis or incomplete typing, e.g., limited epitope-based. The presence of both a critical viral replication element found in HAdV genomes and genes that are highly similar to ones in HAdVs suggest the potential to establish in a human host. This allows a prediction that this virus may be a nascent human respiratory pathogen. The recombination potential of human and simian adenovirus genomes should be considered in the use of SAdVs as vectors for gene delivery in humans.
    Virology 12/2013; 447(1-2):265-73. DOI:10.1016/j.virol.2013.09.009 · 3.28 Impact Factor