Article

Broadband sensitive pump-probe setup for ultrafast optical switching of photonic nanostructures and semiconductors.

FOM Institute for Atomic and Molecular Physics (AMOLF), Kruislaan 407, 1098 SJ Amsterdam, The Netherlands.
The Review of scientific instruments (Impact Factor: 1.52). 08/2009; 80(7):073104. DOI: 10.1063/1.3156049
Source: PubMed

ABSTRACT We describe an ultrafast time resolved pump-probe spectroscopy setup aimed at studying the switching of nanophotonic structures. Both femtosecond pump and probe pulses can be independently tuned over broad frequency range between 3850 and 21,050 cm(-1). A broad pump scan range allows a large optical penetration depth, while a broad probe scan range is crucial to study strongly photonic crystals. A new data acquisition method allows for sensitive pump-probe measurements, and corrects for fluctuations in probe intensity and pump stray light. We observe a tenfold improvement of the precision of the setup compared to laser fluctuations, allowing a measurement accuracy of better than DeltaR=0.07% in a 1 s measurement time. Demonstrations of the improved technique are presented for a bulk Si wafer, a three-dimensional Si inverse opal photonic bandgap crystal, and z-scan measurements of the two-photon absorption coefficient of Si, GaAs, and the three-photon absorption coefficient of GaP in the infrared wavelength range.

0 Bookmarks
 · 
81 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Photoexcitation and charge carrier thermalization inside semiconductor photocatalysts are two important steps in solar fuel production. Here, photoexcitation and charge carrier thermalization in a silicon wafer are for the first time probed by a novel, yet simple and user-friendly Attenuated Total Reflectance Infrared spectroscopy (ATR-IR) system.
    Physical Chemistry Chemical Physics 07/2012; 14(31):10882-5. · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have performed ultrafast pump–probe experiments on a GaAs–AlAs microcavity with a resonance near 1300 nm in the "Original" telecom band. We concentrate on ultimate-fast optical switching of the cavity resonance that is measured as a function of pump-pulse energy. We observe that, at low pump-pulse energies, the switching of the cavity resonance is governed by the instantaneous electronic Kerr effect and is achieved within 300 fs. At high pump-pulse energies, the index change induced by free carriers generated in the GaAs start to compete with the electronic Kerr effect and reduce the resonance frequency shift. We have developed an analytic model that pre-dicts this competition in agreement with the experimental data. To this end, we derive the nondegenerate two-and three-photon absorption coefficients for GaAs. Our model includes a new term in the intensity-dependent refractive index that considers the effect of the probe-pulse intensity, which is resonantly enhanced by the cavity. We calculate the effect of the resonantly enhanced probe light on the refractive index change induced by the electronic Kerr effect for cavities with different quality factors. By exploiting the linear regime where only the electronic Kerr effect is observed, we manage to retrieve the nondegenerate third-order nonlinear susceptibility χ …3† for GaAs from the cavity resonance shift as a function of pump-pulse energy.
    Journal of the Optical Society of America B 01/2012; 29(9):2630-2642. · 2.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A versatile optical setup for all-terahertz (THz) time resolved pump-probe spectroscopy was designed and tested. By utilizing a dual THz pulse generator emitter module, independent and synchronized THz radiation pump and probe pulses were produced, thus eliminating the need for THz beam splitters and the limitations associated with their implementation. The current THz setup allows for precise control of the electric fields splitting ratio between the THz radiation pump and probe pulses, as well as in-phase, out-of-phase, and polarization dependent pump-probe spectroscopy. Since the present THz pump-probe setup does not require specialized THz radiation optical components, such as phase shifters, polarization rotators, or wide bandwidth beam splitters, it can be easily implemented with minimal alterations to a conventional THz time domain spectroscopy system. The present setup is valuable for studying the time dynamics of THz coherent phenomena in solid-state, chemical, and biological systems.
    The Review of scientific instruments 05/2012; 83(5):053107. · 1.52 Impact Factor

Full-text (2 Sources)

View
24 Downloads
Available from
May 19, 2014