Article

Cytokine and chemokine regulation of sensory neuron function.

Molecular Pharmacology and Structural Biochemistry, Northwestern University, Chicago, IL, USA.
Handbook of experimental pharmacology 02/2009; DOI: 10.1007/978-3-540-79090-7_12
Source: PubMed

ABSTRACT Pain normally subserves a vital role in the survival of the organism, prompting the avoidance of situations associated with tissue damage. However, the sensation of pain can become dissociated from its normal physiological role. In conditions of neuropathic pain, spontaneous or hypersensitive pain behavior occurs in the absence of the appropriate stimuli. Our incomplete understanding of the mechanisms underlying chronic pain hypersensitivity accounts for the general ineffectiveness of currently available options for the treatment of chronic pain syndromes. Despite its complex pathophysiological nature, it is clear that neuropathic pain is associated with short- and long-term changes in the excitability of sensory neurons in the dorsal root ganglia (DRG) as well as their central connections. Recent evidence suggests that the upregulated expression of inflammatory cytokines in association with tissue damage or infection triggers the observed hyperexcitability of pain sensory neurons. The actions of inflammatory cytokines synthesized by DRG neurons and associated glial cells, as well as by astrocytes and microglia in the spinal cord, can produce changes in the excitability of nociceptive sensory neurons. These changes include rapid alterations in the properties of ion channels expressed by these neurons, as well as longer-term changes resulting from new gene transcription. In this chapter we review the diverse changes produced by inflammatory cytokines in the behavior of sensory neurons in the context of chronic pain syndromes.

0 Bookmarks
 · 
64 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although microglia have long been considered as brain resident immune cells, increasing evidence suggests that they also have physiological roles in the development of the normal CNS. In this study, we found large numbers of activated microglia in the forebrain subventricular zone (SVZ) of the rat from P1 to P10. Pharmacological suppression of the activation, which produces a decrease in levels of a number of proinflammatory cytokines (i.e., IL-1β, IL-6, TNF-α, and IFN-γ) significantly inhibited neurogenesis and oligodendrogenesis in the SVZ. In vitro neurosphere assays reproduced the enhancement of neurogenesis and oligodendrogenesis by activated microglia and showed that the cytokines revealed the effects complementarily. These results suggest that activated microglia accumulate in the early postnatal SVZ and that they enhance neurogenesis and oligodendrogenesis via released cytokines.
    Journal of Neuroscience 02/2014; 34(6):2231-43. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Painful Diabetic Neuropathy (PDN) is a debilitating syndrome present in a quarter of diabetic patients that has a substantial impact on their quality of life. Despite this significant prevalence and impact, current therapies for PDN are only partially effective. Moreover, the cellular mechanisms underlying PDN are not well understood. Neuropathic pain is caused by a variety of phenomena including sustained excitability in sensory neurons that reduces the pain threshold so that pain is produced in the absence of appropriate stimuli. Chemokine signaling has been implicated in the pathogenesis of neuropathic pain in a variety of animal models. We therefore tested the hypothesis that chemokine signaling mediates DRG neuronal hyperexcitability in association with PDN.
    Molecular Pain 06/2014; 10(1):42. · 3.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HIV-associated sensory neuropathy affects over 50% of HIV patients and is a common peripheral nerve complication of HIV infection and highly active antiretroviral therapy (HAART). Evidence shows that painful HIV sensory neuropathy is influenced by neuroinflammatory events that include the proinflammatory molecules, MAP Kinase, tumor necrosis factor-alpha (TNFalpha), stromal cell-derived factor 1-alpha (SDF1alpha), and C-X-C chemokine receptor type 4 (CXCR4). However, the exact mechanisms of painful HIV sensory neuropathy are not known, which hinders our ability to develop effective treatments. In this study, we investigated whether inhibition of proinflammatory factors reduces the HIV-associated neuropathic pain state.
    Molecular Pain 07/2014; 10(1):49. · 3.77 Impact Factor

Full-text (2 Sources)

View
15 Downloads
Available from
May 21, 2014