X-ray absorption spectroscopy.

Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA.
Photosynthesis Research (Impact Factor: 3.15). 09/2009; 102(2-3):241-54. DOI: 10.1007/s11120-009-9473-8
Source: PubMed

ABSTRACT This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn(4)Ca cluster in Photosystem II is presented.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Photosystem II supports four manganese centers through nine oxidation states from manganese(II) during assembly through to the most oxidized state before O2 formation and release. The protein-based carboxylate and imidazole ligands allow for significant changes of the coordination environment during the incorporation of hydroxido and oxido ligands upon oxidation of the metal centers. We report the synthesis and characterization of a series of tetramanganese complexes in four of the six oxidation states from Mn(II) 3Mn(III) to Mn(III) 2 Mn(IV) 2 with the same ligand framework (L) by incorporating four oxido ligands. A 1,3,5-triarylbenzene framework appended with six pyridyl and three alkoxy groups was utilized along with three acetate anions to access tetramanganese complexes, Mn4O x , with x = 1, 2, 3, and 4. Alongside two previously reported complexes, four new clusters in various states were isolated and characterized by crystallography, and four were observed electrochemically, thus accessing the eight oxidation states from Mn(II) 4 to Mn(III)Mn(IV) 3. This structurally related series of compounds was characterized by EXAFS, XANES, EPR, magnetism, and cyclic voltammetry. Similar to the ligands in the active site of the protein, the ancillary ligand (L) is preserved throughout the series and changes its binding mode between the low and high oxido-content clusters. Implications for the rational assembly and properties of high oxidation state metal-oxido clusters are presented.
    Chemical Science 10/2013; 4(10):3986-3996. · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nanoparticles are among the most important industrial catalysts, with applications ranging from chemical manufacturing to energy conversion and storage. Heterogeneity is a general feature among these nanoparticles, with their individual differences in size, shape, and surface sites leading to variable, particle-specific catalytic activity. Assessing the activity of individual nanoparticles, preferably with subparticle resolution, is thus desired and vital to the development of efficient catalysts. It is challenging to measure the activity of single-nanoparticle catalysts, however. Several experimental approaches have been developed to monitor catalysis on single nanoparticles, including electrochemical methods, single-molecule fluorescence microscopy, surface plasmon resonance spectroscopy, X-ray microscopy, and surface-enhanced Raman spectroscopy. This review focuses on these experimental approaches, the associated methods and strategies, and selected applications in studying single-nanoparticle catalysis with chemical selectivity, sensitivity, or subparticle spatial resolution. Expected final online publication date for the Annual Review of Physical Chemistry Volume 65 is March 31, 2014. Please see for revised estimates.
    Annual Review of Physical Chemistry 01/2014; · 13.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The US Environmental Protection Agency and several U.S. states and Canadian provinces are currently developing national water quality criteria for selenium that are based in part on toxicity tests performed by feeding freshwater fish a selenomethionine-spiked diet. Using only selenomethionine to examine the toxicity of selenium is based in part on the limitations of the analytical chemistry methods commonly used in the 1990s and 2000s to speciate selenium in freshwater biota. While these methods provided a good starting point, recent improvements in analytical chemistry methodology have demonstrated that selenium speciation in biota is far more complex than originally thought. Here, we review the recent literature that suggests that there are numerous additional selenium species present in freshwater food chains and that the toxicities of these other selenium species, both individually and in combination, have not been evaluated in freshwater fishes. Evidence from studies on birds and mammals suggests that the other selenium forms differ in their metabolic pathways and toxicity from selenomethionine. Therefore, we conclude that toxicity testing using selenomethionine-spiked feed is only partly addressing the question "what is the toxicity of selenium to freshwater fishes?" and that using the results of these experiments to derive freshwater quality criteria may lead to biased water quality criteria. We also discuss additional studies that are needed in order to derive a more ecologically relevant freshwater quality criterion for selenium.
    Environmental science. Processes & impacts. 01/2014;


1 Download
Available from