X-ray absorption spectroscopy.

Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA.
Photosynthesis Research (Impact Factor: 3.19). 09/2009; 102(2-3):241-54. DOI: 10.1007/s11120-009-9473-8
Source: PubMed

ABSTRACT This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn(4)Ca cluster in Photosystem II is presented.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: • Few studies have investigated the effects of substrates on the accumulation and precipitation of magnesium, calcium, and sulfur in plants. Acacia stipuligera and A. robeorum growing in their natural habitats with different substrates show different accumulation and precipitation patterns of these elements. Here, we compared the accumulation and precipitation of magnesium, calcium, and sulfur in A. stipuligera and A. robeorum grown in different substrates proposed for mine-site rehabilitation and expected the differences in substrates to have significant effects on the accumulation and precipitation of these elements in the two species.• Saplings were grown in sandy topsoil or in a topsoil-siltstone mixture in a glasshouse. Phyllode magnesium, calcium, and sulfur concentrations of 25-wk-old plants were measured. Precipitation of these elements in phyllodes and branchlets was investigated by means of scanning electron microscopy and energy-dispersive x-ray spectroscopy.• Phyllode magnesium, calcium, and sulfur concentrations were generally significantly greater in A. robeorum than in A. stipuligera. The two species responded in unique ways to the substrate, with A. stipuligera having similar phyllode magnesium and calcium concentrations in both substrates, but greater sulfur concentration in the topsoil-siltstone mixture, while A. robeorum showed lower phyllode magnesium, calcium, and sulfur concentrations in the topsoil-siltstone mixture. For both substrates, mineral precipitates were observed in both species, with A. robeorum having more mineral precipitates containing magnesium, calcium, and sulfur in its phyllodes than A. stipuligera did.• The accumulation and precipitation patterns of magnesium, calcium, and sulfur are more species-specific than substrate-affected. © 2015 Botanical Society of America, Inc.
    American Journal of Botany 02/2015; 102(2):290-301. DOI:10.3732/ajb.1400543 · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the design and characterization of a compact and portable spectrometer realized for photon in-photon out experiments (in particular X-Ray Emission Spectroscopy, XES), in particular tailored to be used at the FERMI freeelectron- laser (FEL) at ELETTRA (Italy). The spectrometer can be installed on different end stations at variable distances from the target area both at synchrotron and FEL beamlines. Different input sections can be accommodated in order to fit the experimental requests, with/without an entrance slit and with/without an additional relay mirror. The design is compact in order to realize a portable instrument within a total footprint of less than one square meter. The instrument is based on the use of two flat-field grazing-incidence gratings and an EUV-enhanced CCD detector to cover the 25-800 eV spectral range, with spectral resolution better than 0.2%. The absolute response of the spectrometer, has been measured in the whole spectral region of operation, allowing calibrated measurements of the photon flux. The characterization on the Gas Phase beamline at ELETTRA Synchrotron as instrument for XES and some experimental data of the FEL emission taken at EIS-TIMEX beamline at FERMI, where the instrument has been used for photon beam diagnostics, are presented.
    SPIE Optical Engineering + Applications; 09/2014
  • Source
    The Biophysics of Photosynthesis, Edited by H. Golbeck and A. van der Est, 09/2014; Springer, New York.


Available from