Article

Use of cyclodextrin and its derivatives for increased transformation efficiency of competent bacterial cells.

NOBIPOL, Department of Biotechnology, Norwegian University of Science and Technology, Sem Saelands vei 6/8, 7491, Trondheim, Norway, .
Applied Microbiology and Biotechnology (Impact Factor: 3.69). 09/2009; DOI: 10.1007/s00253-009-2149-7
Source: PubMed
0 Bookmarks
 · 
45 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have evaluated the potential use of various polyamidoamine (PAMAM) dendrimer [dendrimer, generation (G) 2-4] conjugates with cyclodextrins (CyDs) as novel DNA and RNA carriers. Among the various dendrimer conjugates with CyDs, the dendrimer (G3) conjugate with α-CyD having an average degree of substitution (DS) of 2.4 [α-CDE (G3, DS2)] displayed remarkable properties as DNA, shRNA and siRNA delivery carriers through the sensor function of α-CDEs toward nucleic acid drugs, cell surface and endosomal membranes. In an attempt to develop cell-specific gene transfer carriers, we prepared sugar-appended α-CDEs. Of the various sugar-appended α-CDEs prepared, galactose- or mannose-appended α-CDEs provided superior gene transfer activity to α-CDE in various cells, but not cell-specific gene delivery ability. However, lactose-appended α-CDE [Lac-α-CDE (G2)] was found to possess asialoglycoprotein receptor (AgpR)-mediated hepatocyte-selective gene transfer activity, both in vitro and in vivo. Most recently, we prepared folate-poly(ethylene glycol)-appended α-CDE [Fol-PαC (G3)] and revealed that Fol-PαC (G3) imparted folate receptor (FR)-mediated cancer cell-selective gene transfer activity. Consequently, α-CDEs bearing integrated, multifunctional molecules may possess the potential to be novel carriers for DNA, shRNA and siRNA.
    Sensors. 01/2009;