Semaphorin3A signaling mediated by Fyn-dependent tyrosine phosphorylation of collapsin response mediator protein 2 at tyrosine 32.

Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan.
Journal of Biological Chemistry (Impact Factor: 4.65). 09/2009; 284(40):27393-401. DOI: 10.1074/jbc.M109.000240
Source: PubMed

ABSTRACT Collapsin response mediator protein 2 (CRMP2) is an intracellular protein that mediates signaling of Semaphorin3A (Sema3A), a repulsive axon guidance molecule. Fyn, a Src-type tyrosine kinase, is involved in the Sema3A signaling. However, the relationship between CRMP2 and Fyn in this signaling pathway is still unknown. In our research, we demonstrated that Fyn phosphorylated CRMP2 at Tyr(32) residues in HEK293T cells. Immunohistochemical analysis using a phospho-specific antibody at Tyr(32) of CRMP showed that Tyr(32)-phosphorylated CRMP was abundant in the nervous system, including dorsal root ganglion neurons, the molecular and Purkinje cell layer of adult cerebellum, and hippocampal fimbria. Overexpression of a nonphosphorylated mutant (Tyr(32) to Phe(32)) of CRMP2 in dorsal root ganglion neurons interfered with Sema3A-induced growth cone collapse response. These results suggest that Fyn-dependent phosphorylation of CRMP2 at Tyr(32) is involved in Sema3A signaling.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The axon/dendrite specification collapsin response mediator protein-2 (CRMP-2) bidirectionally regulates N-type voltage-gated Ca(2+) channels (CaV2.2). But how cyclin dependent kinase 5 (Cdk5)-mediated phosphorylation of CRMP-2 affects its interaction/regulation with CaV2.2 is unknown. CRMP-2-mediated enhancement of currents via CaV2.2 was not observed with a Cdk5 phospho-null CRMP-2-S522A mutant or in cells expressing an inactive Cdk5. Concomitant knockdown of endogenous CRMP2 and overexpression of CRMP2-S522A mutant refractory to knockdown phenocopied the reduction in Ca(2+) influx while the Rho kinase CRMP2-T555A mutant was ineffective. Cdk5-phosphorylated CRMP-2 had increased association with CaV2.2. These results identify an important role for Cdk5 in CRMP2-mediated CaV2.2 regulation. STRUCTURED SUMMARY OF PROTEIN INTERACTIONS: Gsk3bphosphorylatesCrmp2by phosphatase assay (View interaction) Crmp2physically interacts with Cav2.2 by anti tag coimmunoprecipitation (View interaction).
    FEBS letters 09/2012; · 3.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nervous and immune systems have similar functional characteristics. Both have an intricate network of synaptic connections and an exquisite communication system that enable intercellular signal transduction. Although semaphorins were originally identified as guidance cues in neural development, accumulating evidence indicates that several semaphorins called 'immune semaphorins', such as Sema3A, 4A, 4D, 6D and 7A, are critically involved in various phases of the immune response by regulating immune cell-cell contacts or cell migration. In this review, we present recent knowledge on the functions of semaphorins and their receptors in the immune system and their potential roles in the pathogenesis of multiple sclerosis (MS), a representative CNS autoimmune disease, and its animal model, experimental autoimmune encephalomyelitis (EAE).
    FEBS letters 03/2011; 585(23):3829-35. · 3.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gaining a basic understanding of the inhibitory molecules and the intracellular signaling involved in axon development and repulsion after neural lesions is of clear biomedical interest. In recent years, numerous studies have described new molecules and intracellular mechanisms that impair axonal outgrowth after injury. In this scenario, the role of glycogen synthase kinase 3 beta (GSK3β) in the axonal responses that occur after central nervous system (CNS) lesions began to be elucidated. GSK3β function in the nervous tissue is associated with neural development, neuron polarization, and, more recently, neurodegeneration. In fact, GSK3β has been considered as a putative therapeutic target for promoting functional recovery in injured or degenerative CNS. In this review, we summarize current understanding of the role of GSK3β during neuronal development and regeneration. In particular, we discuss GSK3β activity levels and their possible impact on cytoskeleton dynamics during both processes.
    Molecular Neurobiology 10/2013; · 5.47 Impact Factor