Dystrophin is a microtubule-associated protein

Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
The Journal of Cell Biology (Impact Factor: 9.69). 09/2009; 186(3):363-9. DOI: 10.1083/jcb.200905048
Source: PubMed

ABSTRACT Cytolinkers are giant proteins that can stabilize cells by linking actin filaments, intermediate filaments, and microtubules (MTs) to transmembrane complexes. Dystrophin is functionally similar to cytolinkers, as it links the multiple components of the cellular cytoskeleton to the transmembrane dystroglycan complex. Although no direct link between dystrophin and MTs has been documented, costamere-associated MTs are disrupted when dystrophin is absent. Using tissue-based cosedimentation assays on mice expressing endogenous dystrophin or truncated transgene products, we find that constructs harboring spectrinlike repeat 24 through the first third of the WW domain cosediment with MTs. Purified Dp260, a truncated isoform of dystrophin, bound MTs with a K(d) of 0.66 microM, a stoichiometry of 1 Dp260/1.4 tubulin heterodimer at saturation, and stabilizes MTs from cold-induced depolymerization. Finally, alpha- and beta-tubulin expression is increased approximately 2.5-fold in mdx skeletal muscle without altering the tubulin-MT equilibrium. Collectively, these data suggest dystrophin directly organizes and/or stabilizes costameric MTs and classifies dystrophin as a cytolinker in skeletal muscle.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The dystrophin-associated glycoprotein complex (DGC) is a collection of glycoproteins that are essential for the normal function of striated muscle and many other tissues. Recent genetic studies have implicated the components of this complex in over a dozen forms of muscular dystrophy. Furthermore, disruption of the DGC has been implicated in many forms of acquired disease. This review aims to summarize the current state of knowledge regarding the processing and assembly of dystrophin-associated proteins with a focus primarily on the dystroglycan heterodimer and the sarcoglycan complex. These proteins form the transmembrane portion of the DGC and undergo a complex multi-step processing with proteolytic cleavage, differential assembly, and both N- and O-glycosylation. The enzymes responsible for this processing and a model describing the sequence and subcellular localization of these events are discussed. Anat Rec, 297:1694–1705, 2014. © 2014 Wiley Periodicals, Inc.
    The Anatomical Record Advances in Integrative Anatomy and Evolutionary Biology 09/2014; 297(9). DOI:10.1002/ar.22974 · 1.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Duchenne muscular dystrophy is a fatal progressive disease of both cardiac and skeletal muscle resulting from the mutations in the DMD gene and loss of the protein dystrophin. Alpha-dystrobrevin (α-DB) tightly associates with dystrophin but significance of this interaction within cardiac myocytes is poorly understood. In the current study the functional role of α-DB in cardiomyocytes and its implications for dystrophin function are examined. Cardiac stress testing demonstrated significant heart disease in α-DB null (adbn(-/-)) mice, which displayed mortality and lesion sizes that were equivalent to those seen in the dystrophin-deficient mdx mouse. Despite normal expression and subcellular localization of dystrophin in the adbn(-/-) heart, there is a significant decrease in the strength of dystrophin's interaction with the membrane-bound dystrophin-associated glycoprotein complex (DGC). A similar weakening of the dystrophin-membrane interface was observed in mice lacking the sarcoglycan complex. Cardiomyocytes from adbn(-/-) mice were smaller and responded less to adrenergic receptor induced hypertrophy. The basal decrease in size could not be attributed to aberrant Akt activation. In addition, the organization of the microtubule network was significantly altered in adbn(-/-) cardiac myocytes, while the total expression of tubulin was unchanged in the adbn(-/-) hearts. These studies demonstrate that α-DB is a multifunctional protein that increases dystrophin's binding to the dystrophin-glycoprotein complex, and is critical for the full functionality of dystrophin.
    Journal of Molecular and Cellular Cardiology 08/2014; 76. DOI:10.1016/j.yjmcc.2014.08.013 · 5.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Matrix metalloproteinases (MMPs) are secreted proteinases that have physiologic roles in degradation and remodeling of extracellular matrix (ECM) in almost all tissues. However, their excessive production in disease conditions leads to many pathological features including tissue breakdown, inflammation, cell death, and fibrosis. Duchenne Muscular dystrophy (DMD) is a devastating genetic muscle disorder caused by partial or complete loss of cytoskeletal protein dystrophin. Progressive muscle wasting in DMD is accompanied by myofiber necrosis followed by cycles of regeneration and degeneration and inflammation that eventually result in replacement of myofiber by connective and adipose tissues. Emerging evidence suggests that gene expression and the activity of various MMPs are aberrantly regulated in muscle biopsies from DMD patients and in skeletal muscle of animal models of DMD. Moreover, a few studies employing genetic mouse models have revealed that different MMPs play distinct roles in disease progression in DMD. Modulation of the activity of MMPs improves myofiber regeneration and enhances the efficacy of transplantation and engraftment of muscle progenitor cells in dystrophic muscle in mouse models of DMD. Furthermore, recent reports also suggest that some MMPs especially MMP-9 can serve as a biomarker for diagnosis and prognosis of DMD. In this article, we provide a succinct overview of the regulation of various MMPs and their therapeutic importance in DMD.
    Frontiers in Cell and Developmental Biology 04/2014; 2:11. DOI:10.3389/fcell.2014.00011