GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3(+) regulatory T cells

Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 08/2009; 106(32):13445-50. DOI: 10.1073/pnas.0901944106
Source: PubMed

ABSTRACT TGF-beta family members are highly pleiotropic cytokines with diverse regulatory functions. TGF-beta is normally found in the latent form associated with latency-associated peptide (LAP). This latent complex can associate with latent TGFbeta-binding protein (LTBP) to produce a large latent form. Latent TGF-beta is also found on the surface of activated FOXP3(+) regulatory T cells (Tregs), but it is unclear how it is anchored to the cell membrane. We show that GARP or LRRC32, a leucine-rich repeat molecule of unknown function, is critical for tethering TGF-beta to the cell surface. We demonstrate that platelets and activated Tregs co-express latent TGF-beta and GARP on their membranes. The knockdown of GARP mRNA with siRNA prevented surface latent TGF-beta expression on activated Tregs and recombinant latent TGF-beta1 is able to bind directly with GARP. Confocal microscopy and immunoprecipitation strongly support their interactions. The role of TGF-beta on Tregs appears to have dual functions, both for Treg-mediated suppression and infectious tolerance mechanism.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Treg cells are key elements of the immune system which are responsible for the immune suppressive phenotype of cancer patients. Interaction of Treg cells with conventional anticancer therapies might fundamentally influence cancer therapy response rates. Radiotherapy, apart of its direct tumor cell killing potential has a contradictory effect on the antitumor immune response: it augments certain immune parameters, while it depresses others. Treg cells are intrinsically radioresistant due to reduced apoptosis and increased proliferation, which leads to their systemic and/or intratumoral enrichment. While physiologically Treg suppression is not enhanced by irradiation, this is not the case in a tumorous environment, where Tregs acquire a highly suppressive phenotype, which is further increased by radiotherapy. This is the reason why the interest for combined radiotherapy and immunotherapy approaches focusing on the abrogation of Treg suppression increased in cancer therapy in the last few years. Here we summarize the basic mechanisms of Treg radiation response both in healthy and in cancerous environment and discuss Treg-targeted pre-clinical and clinical immunotherapy approaches used in combination with radiotherapy. Finally, the discrepant findings regarding the predictive value of Tregs in therapy response are also reviewed. Copyright © 2015. Published by Elsevier Ireland Ltd.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alopecia areata (AA) is a prevalent autoimmune disease with 10 known susceptibility loci. Here we perform the first meta-analysis of research on AA by combining data from two genome-wide association studies (GWAS), and replication with supplemented ImmunoChip data for a total of 3,253 cases and 7,543 controls. The strongest region of association is the major histocompatibility complex, where we fine-map four independent effects, all implicating human leukocyte antigen-DR as a key aetiologic driver. Outside the major histocompatibility complex, we identify two novel loci that exceed the threshold of statistical significance, containing ACOXL/BCL2L11(BIM) (2q13); GARP (LRRC32) (11q13.5), as well as a third nominally significant region SH2B3(LNK)/ATXN2 (12q24.12). Candidate susceptibility gene expression analysis in these regions demonstrates expression in relevant immune cells and the hair follicle. We integrate our results with data from seven other autoimmune diseases and provide insight into the alignment of AA within these disorders. Our findings uncover new molecular pathways disrupted in AA, including autophagy/apoptosis, transforming growth factor beta/Tregs and JAK kinase signalling, and support the causal role of aberrant immune processes in AA.
    Nature Communications 01/2015; 6:5966. DOI:10.1038/ncomms6966 · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulatory T cells (Tregs) are suppressive T cells that have an essential role in maintaining the balance between immune activation and tolerance. Their development, either in the thymus, periphery, or experimentally in vitro, and stability and function all depend on the right mix of environmental stimuli. This review focuses on the effects of cytokines, metabolites, and the microbiome on both human and mouse Treg biology. The role of cytokines secreted by innate and adaptive immune cells in directing Treg development and shaping their function is well established. New and emerging data suggest that metabolites, such as retinoic acid, and microbial products, such as short-chain fatty acids, also have a critical role in guiding the functional specialization of Tregs. Overall, the complex interaction between distinct environmental stimuli results in unique, and in some cases tissue-specific, tolerogenic environments. Understanding the conditions that favor Treg induction, accumulation, and function is critical to defining the pathophysiology of many immune-mediated diseases and to developing new therapeutic interventions.
    Frontiers in Immunology 02/2015; 6:61. DOI:10.3389/fimmu.2015.00061


Available from