Cutting Edge: IL-15-Independent NK Cell Response to Mouse Cytomegalovirus Infection

Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414, USA.
The Journal of Immunology (Impact Factor: 5.36). 07/2009; 183(5):2911-4. DOI: 10.4049/jimmunol.0901872
Source: PubMed

ABSTRACT NK cells respond rapidly during viral infection. The development, function, and survival of NK cells are thought to be dependent on IL-15. In mice lacking IL-15, NK cells are found in severely decreased numbers. Surprisingly, following infection of IL-15- and IL-15Ralpha-deficient mice with mouse CMV, we measured a robust proliferation of Ly49H-bearing NK cells in lymphoid and nonlymphoid organs capable of cytokine secretion and cytolytic function. Remarkably, even in Rag2(-/-) x Il2rg(-/-) mice, a widely used model of NK cell deficiency, we detected a significant number of NK cells 1 wk after mouse CMV infection. In these mice we measured a >300-fold expansion of NK cells, which was dependent on recognition of the m157 viral glycoprotein ligand and IL-12. Together, these findings demonstrate a previously unrecognized independence of NK cells on IL-15 or other common gamma signaling cytokines during their response against viral infection.

  • Source
    • "In some experiments, unirradiated wild-type or Klra8 / C57BL/6 mice received NK cells before BrdU treatment or viral infection. BrdU treatment of mice was performed as previously described (Sun et al., 2009a). CFSE labeling of cells was performed according to the manufacturer's instructions (Invitrogen). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cells of the immune system undergo homeostatic proliferation during times of lymphopenia induced by certain viral infections or caused by chemotherapy and radiation treatment. Natural killer (NK) cells are no exception and can rapidly expand in number when placed into an environment devoid of these cells. We explored the lifespan and function of mouse NK cells that have undergone homeostatic proliferation in various settings of immunodeficiency. Adoptive transfer of mature NK cells into lymphopenic mice resulted in the generation of a long-lived population of NK cells. These homeostasis-driven NK cells reside in both lymphoid and nonlymphoid organs for >6 mo and, similar to memory T cells, self-renew and slowly turn over at steady state. Furthermore, homeostatically expanded NK cells retained their functionality many months after initial transfer and responded robustly to viral infection. These findings highlight the ability of mature NK cells to self-renew and possibly persist in the host for months or years and might be of clinical importance during NK cell adoptive immunotherapy for the treatment of certain cancers.
    Journal of Experimental Medicine 02/2011; 208(2):357-68. DOI:10.1084/jem.20100479 · 13.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Following allogeneic hematopoietic cell transplantation, donor-derived natural killer (NK) cells target recipient hematopoietic cells, resulting in an antileukemia effect and a lower incidence of graft rejection. NK cells do not mediate and may diminish graft versus host disease. Here we review the determinants of NK cell alloreactivity and their implications for adoptive NK cell therapy. NK cell alloreactivity has been defined by the absence of recipient MHC class I ligands for donor inhibitory killer immunoglobulin-like receptor (KIR) receptors, as predicted by a number of algorithms. Recently, the role of activating NK receptors and their cognate ligands has received more attention. The beneficial clinical effect of NK-cell alloreactivity has not been uniformly demonstrated, likely reflecting differences in conditioning regimens, graft components and posttransplant immune suppression. Investigations of NK cell phenotype and function after transplantation have helped demonstrate which NK cell subsets mediate the graft versus leukemia effect. These advances have proceeded in parallel with increasing facility in GMP-grade bulk purification and administration of NK cell preparations. NK cells are a heterogeneous population of lymphocytes with diverse patterns of target-cell recognition and effector function. Further clinical and functional correlations will help maximize their potential for clinical benefit.
    Current opinion in oncology 12/2009; 22(2):130-7. DOI:10.1097/CCO.0b013e328335a559 · 3.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The conclusive evidence supporting a role for NK cells in defense against viruses has been obtained under conditions of NK cell deficiencies prior to infections. NK cell proliferation can be induced during infections, but the advantages of resulting expansion have been unclear because NK cell basal frequency is already high. However, NK cell decreases are also observed during certain conditions of viral infection. Given the range of potent antiviral and immunoregulatory functions of NK cells, such "disappearance" dramatically changes the resources available to the host. New studies demonstrate that proliferation dependent on activating receptors for virus-induced ligands is key for NK cell maintenance, and allows their continued availability for control of adaptive immune responses and immunopathology. This pathway for sustaining NK cells may represent a system used generally to select subsets for rescue during homeostatic purging. In the case of NK cells, though, nonselection limits continued access to the many beneficial functions of NK cells. The observations resolve the long-standing conundrum of reported NK cell increases and decreases during viral infections. Moreover, they demonstrate a previously unappreciated role for activating receptors, i.e. to keep NK cells here today and also tomorrow.
    European Journal of Immunology 04/2010; 40(4):923-32. DOI:10.1002/eji.201040304 · 4.52 Impact Factor
Show more


Available from