Analysis of Caribbean ciguatoxin-1 effects on frog myelinated axons and the neuromuscular junction.

CNRS, Institut de Neurobiologie Alfred Fessard - FRC2118, Laboratoire de Neurobiologie Cellulaire et Moléculaire - UPR9040, bât. 32-33, F-91198 Gif sur Yvette, France.
Toxicon (Impact Factor: 2.92). 08/2009; 56(5):759-67. DOI: 10.1016/j.toxicon.2009.07.026
Source: PubMed

ABSTRACT Caribbean ciguatoxin-1 (C-CTX-1) induced, after about 1h exposure, muscle membrane depolarisation and repetitive post-synaptic action potentials (APs) in frog neuromuscular preparations. This depolarising effect was also observed in a Ca(2+)-free medium with a strong enhancement of spontaneous quantal transmitter release, compared with control conditions. The ciguatoxin-induced increase in release could be accelerated when Ca(2+) was present in the extracellular medium. C-CTX-1 also enhanced nerve-evoked quantal acetylcholine (ACh) release. At normal neuromuscular junctions loaded with the fluorescent dye FM1-43, C-CTX-1 induced swelling of nerve terminals, an effect that was reversed by hyperosmotic d-mannitol. In myelinated axons, C-CTX-1 increased nodal membrane excitability, inducing spontaneous and repetitive APs. Also, the toxin enlarged the repolarising phase of APs in control and tetraethylammonium-treated axons. Overall, our data suggest that C-CTX-1 affects nerve excitability and neurotransmitter release at nerve terminals. We conclude that C-CTX-1-induced up-regulation of Na(+) channels and the inhibition of K(+) channels, at low nanomolar concentrations, produce a variety of functional dysfunctions that are in part responsible for the human muscle skeletal symptoms observed in ciguatera. All these dysfunctions seem to result from the subtle balance between ionic currents, intracellular Na(+) and Ca(2+) concentrations, and engaged second messengers.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Voltage-gated potassium (Kv) and sodium (Nav) channels are key determinants of cellular excitability and serve as targets of neurotoxins. Most marine ciguatoxins potentiate Nav channels and cause ciguatera seafood poisoning. Several ciguatoxins have also been shown to affect Kv channels, and we showed previously that the ladder-shaped polyether toxin gambierol is a potent Kv channel inhibitor. Most likely, gambierol acts via a lipid-exposed binding site, located outside the K(+) permeation pathway. However, the mechanism by which gambierol inhibits Kv channels remained unknown. Using gating and ionic current analysis to investigate how gambierol affected S6 gate opening and voltage-sensing domain (VSD) movements, we show that the resting (closed) channel conformation forms the high-affinity state for gambierol. The voltage dependence of activation was shifted by >120 mV in the depolarizing direction, precluding channel opening in the physiological voltage range. The (early) transitions between the resting and the open state were monitored with gating currents, and provided evidence that strong depolarizations allowed VSD movement up to the activated-not-open state. However, for transition to the fully open (ion-conducting) state, the toxin first needed to dissociate. These dissociation kinetics were markedly accelerated in the activated-not-open state, presumably because this state displayed a much lower affinity for gambierol. A tetrameric concatemer with only one high-affinity binding site still displayed high toxin sensitivity, suggesting that interaction with a single binding site prevented the concerted step required for channel opening. We propose a mechanism whereby gambierol anchors the channel's gating machinery in the resting state, requiring more work from the VSD to open the channel. This mechanism is quite different from the action of classical gating modifier peptides (e.g., hanatoxin). Therefore, polyether toxins open new opportunities in structure-function relationship studies in Kv channels and in drug design to modulate channel function.
    The Journal of General Physiology 03/2013; 141(3):359-69. · 4.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ciguatoxins, mainly produced by benthic dinoflagellate Gambierdiscus species, are responsible for a complex human poisoning known as ciguatera. Previous pharmacological studies revealed that these toxins activate voltage-gated Na(+) channels. In frog nodes of Ranvier, ciguatoxins induce spontaneous and repetitive action potentials (APs) and increase axonal volume that may explain alterations of nerve functioning in intoxicated humans. The present study aimed determining the ionic mechanisms involved in Pacific ciguatoxin-1B (P-CTX-1B)-induced membrane hyperexcitability and subsequent volume increase in frog nodes of Ranvier, using electrophysiology and confocal microscopy. The results reveal that P-CTX-1B action is not dependent on external Cl(-) ions since it was not affected by substituting Cl(-) by methylsulfate ions. In contrast, substitution of external Na(+) by Li(+) ions suppressed spontaneous APs and prevented nodal swelling. This suggests that P-CTX-1B-modified Na(+) channels are not selective to Li(+) ions and/or are blocked by these ions, and that Na(+) influx through Na(+) channels opened during spontaneous APs is required for axonal swelling. The fact that the K(+) channel blocker tetraethylammonium modified, but did not suppress, spontaneous APs and greatly reduced nodal swelling induced by P-CTX-1B indicates that K(+) efflux might also be involved. This is supported by the fact that P-CTX-1B, when tested in the presence of both tetraethylammonium and the K(+) ionophore valinomycin, produced the characteristic nodal swelling. It is concluded that, during the action of P-CTX-1B, water movements responsible for axonal swelling depend on both Na(+) influx and K(+) efflux. These results pave the way for further studies regarding ciguatera treatment.
    Neuropharmacology 06/2014; 85:417-426. · 4.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The prevalence of poisoning events due to harmful algal blooms (HABs) has declined during the last two decades through monitoring programs and legislation, implemented mainly for bivalves. However, new toxin vectors and emergent toxins pose a challenge to public health. Several locations on the Portuguese coast were surveyed between 2009 and 2010 for three distinct biotoxin groups [saxitoxin (PST), spirolide (SPX) and okadaic acid (OA)], in 14 benthic species of mollusks and echinoderms. Our main goals were to detect new vectors and unravel the seasonal and geographical patterns of these toxins. PSTs were analyzed by the Lawrence method, SPXs by LC-MS/MS, and OA by LC-MS/MS and UPLC-MS/MS. We report 16 new vectors for these toxins in the North Atlantic. There were differences in toxin contents among species, but no significant geographical or seasonal patterns were found. Our results suggest that legislation should be adjusted to extend the monitoring of marine toxins to a wider range of species besides edible bivalves.
    Marine Drugs 01/2013; 11(6):1936-60. · 3.98 Impact Factor