Article

Gefitinib Inhibits the Proliferation of Pancreatic Cancer Cells via Cell Cycle Arrest

Department of Biochemistry and Molecular Biology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China.
The Anatomical Record Advances in Integrative Anatomy and Evolutionary Biology (Impact Factor: 1.53). 08/2009; 292(8):1122-7. DOI: 10.1002/ar.20938
Source: PubMed

ABSTRACT High expression of the epidermal growth factor receptor (EGFR) has been implicated in the development of pancreatic cancer. Gefitinib is an orally active and selective EGFR-TKI (EGFR-tyrosine kinase inhibitor) that blocks signal transduction pathways responsible for the proliferation and survival of cancer cells, and other host-dependent processes promoting cancer growth. This study investigated the anticancer effect of gefitinib on human pancreatic cancer cells and the molecular mechanism involved. We first evaluated the effect of gefitinib on cell proliferation with MTT assay and the results demonstrated that gefitinib significantly inhibited the proliferation of pancreatic cancer cells. Flow cytometric analysis showed that gefitinib induced a delay in cell cycle progression and a G0/G1 arrest together with a G2/M block; these were associated with increased expression of p27(Kip1) cyclin-dependent kinase inhibitor combined with decreased expression of aurora B. Besides, luciferase reporter assay revealed that transcriptional mechanism was responsible for the down-regulation of aurora B protein by gefitinib. Overall, the results suggest a mechanistic connection among these events to provide new insights into the mechanism underlying the antiproliferative effect of gefitinib on pancreatic cancer and supplement a theory basis of gefitinib in clinical treatment of pancreatic cancer.

0 Followers
 · 
135 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adverse side effects and acquired resistance to conventional platinum based chemotherapy have become major impediments in ovarian cancer treatment, and drive the development of more selective anticancer drugs. Chaetoglobosin K (ChK) was shown to have a more potent growth inhibitory effect than cisplatin on two cisplatin-resistant ovarian cancer cell lines, OVCAR-3 and A2780/CP70, and was less cytotoxic to a normal ovarian cell line, IOSE-364, than to the cancer cell lines. Hoechst 33342 staining and Flow cytometry analysis indicated that ChK induced preferential apoptosis and G2 cell cycle arrest in both ovarian cancer cells respect to the normal ovarian cells. ChK induced apoptosis through a p53-dependent caspase-8 activation extrinsic pathway, and caused G2 cell cycle arrest via cyclin B1 by increasing p53 expression and p38 phosphorylation in OVCAR-3 and A2780/CP70 cells. DR5 and p21 might play an important role in determining the sensitivity of normal and malignant ovarian cells to ChK. Based on these results, ChK would be a potential compound for treating platinum- resistant ovarian cancer.
    Cancer letters 01/2015; 356(2):418-33. DOI:10.1016/j.canlet.2014.09.023 · 5.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Drug-resistance to gemcitabine chemotherapy in pancreatic cancer is still an unsolved problem. Combinations of other chemotherapy drugs with gemcitabine have been shown to increase the efficacy of gemcitabine-based treatment. In this study, the effect of berbamine on the antitumor activity of gemcitabine was evaluated in human pancreatic cancer cell lines Bxpc-3 and Panc-1, and the underlying mechanisms were explored. Our results demonstrated that berbamine exhibited a time- and dose-dependent inhibitory effect in the pancreatic cancer cell lines. Berbamine enhanced gemcitabine-induced cell growth inhibition and apoptosis in these cells. Combined treatment of berbamine and gemcitabine resulted in down-regulation of anti-apoptotic proteins (Bcl-2, Bcl-xL) and up-regulation of pro-apoptotic proteins (Bax, Bid). More importantly, berbamine treatment in combination with gemcitabine activated the transforming growth factor-β/Smad (TGF-β/Smad) signaling pathway, as a result of a decrease in Smad7 and an increase in transforming growth factor-β receptor II (TβRII) expression. Changes in downstream targets of Smad7, such as up-regulation of p21 and down-regulation of c-Myc and Cyclin D1 were also observed. Therefore, berbamine could enhance the antitumor activity of gemcitabine by inhibiting cell growth and inducing apoptosis, possibly through the regulation of the expression of apoptosis-related proteins and the activation of TGF-β/Smad signaling pathway. Our study indicates that berbamine may be a promising candidate to be used in combination with gemcitabine for pancreatic cancer treatment. Anat Rec, 2014. © 2014 Wiley Periodicals, Inc.
    The Anatomical Record Advances in Integrative Anatomy and Evolutionary Biology 05/2014; 297(5). DOI:10.1002/ar.22897 · 1.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Although there are many studies on the mechanism of chemoresistance in cancers, studies on the relations between WNT5A and chemoresistance in pancreatic cancer are rare. The present study was to examine the role of WNT5A in the regulation of cell cycle progression and in chemoresistance in pancreatic cancer tissues and cell lines. METHODS: Fresh pancreatic cancer and paracarcinoma tissues were obtained from 32 patients. The expressions of WNT5A, AKT/p-AKT and Cyclin D1 were detected by immunohistochemistry, and the correlation between WNT5A expression and clinicopathological characteristics was analyzed. The relationship between WNT5A expression and gemcitabine resistance was studied in PANC-1 and MIAPaCa2 cell lines. The effect of WNT5A on the regulation of cell cycle and gemcitabine cytotoxicity were investigated. The associations among the expressions of p-AKT, Cyclin D1 and WNT5A were also analyzed in cell lines and the effect of WNT5A on restriction-point (R-point) progression was evaluated. RESULTS: WNT5A, p-AKT and Cyclin D1 were highly expressed in pancreatic cancer tissues, and the WNT5A expression was correlated with the TNM stages. In vitro, WNT5A expression was associated with gemcitabine chemoresistance. The percentage of cells was increased in G0/G1 phase and decreased in S phase after knockdown of WNT5A in PANC-1. WNT5A promoted Cyclin D1 expression through phosphorylation of AKT which consequently enhanced G1-S transition and gemcitabine resistance. Furthermore, WNT5A enhanced the cell cycle progression toward R-point through regulation of retinoblastoma protein (pRb) and pRb-E2F complex formation. CONCLUSIONS: WNT5A induced chemoresistance by regulation of G1-S transition in pancreatic cancer cells. WNT5A might serve as a predictor of gemcitabine response and as a potential target for tumor chemotherapy.
    Hepatobiliary & pancreatic diseases international: HBPD INT 10/2014; 13(5):529-38. DOI:10.1016/S1499-3872(14)60277-0 · 1.17 Impact Factor

Preview

Download
0 Downloads