Article

ZIP: a novel transcription repressor, represses EGFR oncogene and suppresses breast carcinogenesis.

Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Health Science Center, Beijing, China.
The EMBO Journal (Impact Factor: 9.82). 08/2009; 28(18):2763-76. DOI: 10.1038/emboj.2009.211
Source: PubMed

ABSTRACT Despite the importance of epidermal growth factor receptor (EGFR) in animal development and malignant transformation, surprisingly little is known about the regulation of its expression. Here, we report a novel zinc finger and G-patch domain-containing protein, ZIP. We demonstrated that ZIP acts as a transcription repressor through the recruitment of the nucleosome remodelling and deacetylase complex. Transcriptional target analysis revealed that ZIP regulates several cellular signalling pathways including EGFR pathways that are critically involved in cell proliferation, survival, and migration. We showed that ZIP inhibits cell proliferation and suppresses breast carcinogenesis, and that ZIP depletion leads to a drastic tumour growth in vivo. We found that ZIP is downregulated in breast carcinomas and that its level of expression is negatively correlated with that of EGFR. Our data indicate that ZIP is a novel transcription repressor and a potential tumour suppressor. These findings may shed new light on the EGFR-related breast carcinogenesis and might offer a potential new target for breast cancer therapy.

0 Bookmarks
 · 
126 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The expression of retinoblastoma and several retino-blastoma-related genes was studied in glioma cell line U87 and its subline with knockdown of ERN1 (endo-plasmic reticulum—nuclei-1), the main endoplasmic reticulum stress sensing and signaling enzyme. It was shown that a blockade of the ERN1 enzyme function increases the expression levels of retinoblastoma, re-tinoblastoma-like 1 and most retinoblastoma related genes: EID1, JARID1B, E2F1, E2F3, RBAP48 and CTIP, does not change RNF40 and RBAP46 and de-creases KDM5A. We have also demonstrated that hy-poxia reduces the expression levels of retinoblastoma, EID1, and E2F1 in ERN1-deficient glioma cells only. At the same time, the expression levels of retinoblas-toma-like 1, E2F3, RBAP46, RBAP48 and CTIP de-crease, while JARID1B and RBBP2 increase in both types of cells in hypoxic conditions, but the expression is much stronger in cells with suppressed function of ERN1. The expression level of JARID1B and KDM-5A mRNA is also enhanced in glutamine deprivation condition in both tested cell types, moreover, this ef-fect is amplified by the blockade of the ERN1 enzyme function. The expression levels of retinoblastoma, EID1, RBAP48, and E2F3 are decreased in glutamine deprivation condition only in ERN1-deficient glioma cells, but RBL1, CTIP, RBAP46, and E2F1—in both tested cell types with more significant effect in ERN1-deficient cells. Glucose deprivation condition leads to a decrease of expression levels of retinoblastoma, RBL1, E2F3, RBAP46, and RBAP48 in both used cell types and of EID1 and E2F1 only in glioma cells with suppressed function of signaling enzyme ERN1. Thus, expression levels of retinoblastoma and most retino-blastoma-related genes are increased under a block-ade of ERN1 enzyme function and significantly changed in hypoxia, glucose or glutamine deprivation condi-tions both in control U87 cells and ERN1-deficient cells, but inhibition of the unfolded protein response sensor ERN1 predominantly enhances these effects. Moreover, it is possible that the induction of the ex-pression of retinoblastoma and most retinoblastoma-related genes after knockdown of ERN1 plays an im-portant role in suppression of glioma proliferation.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Vpr protein from type 1 and type 2 Human Immunodeficiency Viruses (HIV-1 and HIV-2) is thought to inactivate several host proteins through the hijacking of the DCAF1 adaptor of the Cul4A ubiquitin ligase. Here, we identified two transcriptional regulators, ZIP and sZIP, as Vpr-binding proteins degraded in the presence of Vpr. ZIP and sZIP have been shown to act through the recruitment of the NuRD chromatin remodeling complex. Strikingly, chromatin is the only cellular fraction where Vpr is present together with Cul4A ubiquitin ligase subunits. Components of the NuRD complex and exogenous ZIP and sZIP were also associated with this fraction. Several lines of evidence indicate that Vpr induces ZIP and sZIP degradation by hijacking DCAF1: (i) Vpr induced a drastic decrease of exogenously expressed ZIP and sZIP in a dose-dependent manner, (ii) this decrease relied on the proteasome activity, (iii) ZIP or sZIP degradation was impaired in the presence of a DCAF1-binding deficient Vpr mutant or when DCAF1 expression was silenced. Vpr-mediated ZIP and sZIP degradation did not correlate with the growth-related Vpr activities, namely G2 arrest and G2 arrest-independent cytotoxicity. Nonetheless, infection with HIV-1 viruses expressing Vpr led to the degradation of the two proteins. Altogether our results highlight the existence of two host transcription factors inactivated by Vpr. The role of Vpr-mediated ZIP and sZIP degradation in the HIV-1 replication cycle remains to be deciphered.
    PLoS ONE 01/2013; 8(10):e77320. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Jumonji domain-containing 6 (JMJD6) is a member of the Jumonji C domain-containing family of proteins. Compared to other members of the family, the cellular activity of JMJD6 is still not clearly defined and its biological function is still largely unexplored. Here we report that JMJD6 is physically associated with the tumor suppressor p53. We demonstrated that JMJD6 acts as an α-ketoglutarate- and Fe(II)-dependent lysyl hydroxylase to catalyze p53 hydroxylation. We found that p53 indeed exists as a hydroxylated protein in vivo and that the hydroxylation occurs mainly on lysine 382 of p53. We showed that JMJD6 antagonizes p53 acetylation, promotes the association of p53 with its negative regulator MDMX, and represses transcriptional activity of p53. Depletion of JMJD6 enhances p53 transcriptional activity, arrests cells in the G1 phase, promotes cell apoptosis, and sensitizes cells to DNA damaging agent-induced cell death. Importantly, knockdown of JMJD6 represses p53-dependent colon cell proliferation and tumorigenesis in vivo, and significantly, the expression of JMJD6 is markedly up-regulated in various types of human cancer especially in colon cancer, and high nuclear JMJD6 protein is strongly correlated with aggressive clinical behaviors of colon adenocarcinomas. Our results reveal a novel posttranslational modification for p53 and support the pursuit of JMJD6 as a potential biomarker for colon cancer aggressiveness and a potential target for colon cancer intervention.
    PLoS Biology 03/2014; 12(3):e1001819. · 12.69 Impact Factor

Full-text (2 Sources)

Download
37 Downloads
Available from
May 22, 2014