Specific pathways prevent duplication-mediated genome rearrangements.

Ludwig Institute for Cancer Research, Department of Medicine, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0669, USA.
Nature (Impact Factor: 42.35). 08/2009; 460(7258):984-9. DOI: 10.1038/nature08217
Source: PubMed

ABSTRACT We have investigated the ability of different regions of the left arm of Saccharomyces cerevisiae chromosome V to participate in the formation of gross chromosomal rearrangements (GCRs). We found that the 4.2-kilobase HXT13-DSF1 region sharing divergent homology with chromosomes IV, X and XIV, similar to mammalian segmental duplications, was 'at risk' for participating in duplication-mediated GCRs generated by homologous recombination. Numerous genes and pathways, including SGS1, TOP3, RMI1, SRS2, RAD6, SLX1, SLX4, SLX5, MSH2, MSH6, RAD10 and the DNA replication stress checkpoint requiring MRC1 and TOF1, were highly specific for suppressing these GCRs compared to GCRs mediated by single-copy sequences. These results indicate that the mechanisms for formation and suppression of rearrangements occurring in regions containing at-risk sequences differ from those occurring in regions of single-copy sequence. This explains how extensive genome instability is prevented in eukaryotic cells whose genomes contain numerous divergent repeated sequences.

  • [Show abstract] [Hide abstract]
    ABSTRACT: DNA mismatch repair (MMR)a is initiated by either the Msh2-Msh6 or the Msh2-Msh3 mispair recognition heterodimer. Here, we optimized the expression and purification of Saccharomyces cerevisiae Msh2-Msh3 and performed a comparative study of Msh2-Msh3 and Msh2-Msh6 for mispair binding, sliding clamp formation and Mlh1-Pms1 recruitment. Msh2-Msh3 formed sliding clamps and recruited Mlh1-Pms1 on +1, +2, +3 and +4 insertion/deletions and CC, AA and possibly GG mispairs whereas Msh2-Msh6 formed mispair-dependent sliding clamps and recruited Mlh1-Pms1 on 7 of the 8 possible base:base mispairs, the +1 insertion/deletion mispair and to a low level on the +2 but not the +3 or +4 insertion/deletion mispairs and not on the CC mispair. The mispair specificity of sliding clamp formation and Mlh1-Pms1 recruitment but not mispair binding alone correlated best with genetic data on the mispair specificity of Msh2-Msh3- and Msh2-Msh6-dependent MMR in vivo. Analysis of an Msh2-Msh6/Msh3 chimeric protein and mutant Msh2-Msh3 complexes showed that the nucleotide binding domain and communicating regions but not the mispair binding domain of Msh2-Msh3 are responsible for the extremely rapid dissociation of Msh2-Msh3 sliding clamps from DNA relative to that seen for Msh2-Msh6 and that amino acid residues predicted to stabilize Msh2-Msh3 interactions with bent, strand separated mispair-containing DNA are more critical for the recognition of small +1 insertion/deletions than larger +4 insertion/deletions.
    Journal of Biological Chemistry 02/2014; · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Whole genome sequencing of cancer genomes has revealed a diversity of recurrent gross chromosomal rearrangements (GCRs) that are likely signatures of specific defects in DNA damage response pathways. However, inferring the underlying defects has been difficult due to insufficient information relating defects in DNA metabolism to GCR signatures. By analyzing over 95 mutant strains of Saccharomyces cerevisiae, we found that the frequency of GCRs that deleted an internal CAN1/URA3 cassette on chrV L while retaining a chrV L telomeric hph marker was significantly higher in tel1Δ, sae2Δ, rad53Δ sml1Δ, and mrc1Δ tof1Δ mutants. The hph-retaining GCRs isolated from tel1Δ mutants contained either an interstitial deletion dependent on non-homologous end-joining or an inverted duplication that appeared to be initiated from a double strand break (DSB) on chrV L followed by hairpin formation, copying of chrV L from the DSB toward the centromere, and homologous recombination to capture the hph-containing end of chrV L. In contrast, hph-containing GCRs from other mutants were primarily interstitial deletions (mrc1Δ tof1Δ) or inverted duplications (sae2Δ and rad53Δ sml1Δ). Mutants with impaired de novo telomere addition had increased frequencies of hph-containing GCRs, whereas mutants with increased de novo telomere addition had decreased frequencies of hph-containing GCRs. Both types of hph-retaining GCRs occurred in wild-type strains, suggesting that the increased frequencies of hph retention were due to the relative efficiencies of competing DNA repair pathways. Interestingly, the inverted duplications observed here resemble common GCRs in metastatic pancreatic cancer.
    PLoS Genetics 04/2014; 10(4):e1004277. · 8.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nonallelic homologous recombination (NAHR), occurring between low-copy repeats (LCRs) >10 kb in size and sharing >97% DNA sequence identity, is responsible for the majority of recurrent genomic rearrangements in the human genome. Recent studies have shown that transposable elements (TEs) can also mediate recurrent deletions and translocations, indicating the features of substrates that mediate NAHR may be significantly less stringent than previously believed. Using >4 kb length and >95% sequence identity criteria, we analyzed of the genome-wide distribution of long interspersed element (LINE) retrotransposon and their potential to mediate NAHR. We identified 17 005 directly oriented LINE pairs located <10 Mbp from each other as potential NAHR substrates, placing 82.8% of the human genome at risk of LINE-LINE-mediated instability. Cross-referencing these regions with CNVs in the Baylor College of Medicine clinical chromosomal microarray database of 36 285 patients, we identified 516 CNVs potentially mediated by LINEs. Using long-range PCR of five different genomic regions in a total of 44 patients, we confirmed that the CNV breakpoints in each patient map within the LINE elements. To additionally assess the scale of LINE-LINE/NAHR phenomenon in the human genome, we tested DNA samples from six healthy individuals on a custom aCGH microarray targeting LINE elements predicted to mediate CNVs and identified 25 LINE-LINE rearrangements. Our data indicate that LINE-LINE-mediated NAHR is widespread and under-recognized, and is an important mechanism of structural rearrangement contributing to human genomic variability. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 01/2015; · 8.81 Impact Factor


Available from